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iv CONTENTS

1. Preface

The purpose of this short textbook is to teach basic elements of quantum me-
chanics, group theory, and many-body physics to undergraduate and advanced
high school students. High school students?! Indeed, the book began as a set
of self-guided study notes to teach advanced high school students in an honors
research/mentorship program in southeastern Virginia how to calculate the mass
splitting of the nucleon, N(939) and lightest spin-3

2 , isospin- 3
2 state, the ∆(1232)

due to the hyperfine interaction between the quarks. (If you don’t know what this
means, don’t worry, after you read and work through the problems in these 60-
some odd pages, you will.) The students who have worked through the book were,
I think, successful in attaining that objective.

The book – honestly, calling it a book is a bit of a stretch in its current form,
but it’s a little more than a set of notes because it attempts to teach the reader as
the exercises are worked out – presupposes only a knowledge in complex arithmatic
and calculus sufficient to integrate functions of single variable and understand very
basic linear differential equations. The style of the book is that of a self-study
guide. I have gone to some, though no doubt insufficient, length at making the
technical development of the narrative as accessible as possible while still requiring
that the significant logical developments be left to the reader to work out. In other
words, there are a lot of exercises that are not difficult and occasionally there’s a
tough problem that brings together the results of the exercises that came before.
I’ve also tried to include much of the algebra and intermediate steps to working
out the exercises, either immediately before or just after the given exercise, directly
in the text. No doubt more could have been included, but there is a fine line
between showing not enough and too much. I’m sure I have crossed it numerous
times and would appreciate any comments on the text, of a general nature, to
mparis@gwu.edu.

My gratitude goes to the two students, Kiralyse Gonzalez and Joel Gillespie,
without whom this work would likely not have happened. As they worked through
the material, they provided valuable feedback and constructive analysis of the text
itself, often pointing out difficult sections and mistakes. The text itself is far from
a complete work, but I hope it will be useful for people who want to learn some
quantum mechanics in a ‘quick-start’ format. Of course, as is usual with the quick-
start approach, it can only offer an entrée into a deeper and more comprehensive
knowledge of the material. You won’t, in short, be an expert in quantum physics
after reading this book. You will, however, have learned some valuable calculational
tools and analytical techniques that you will encounter frequently in the study of
quantum systems.

Mark Paris
Washington, D.C.
2010 September 11

Get over the idea that only children should spend their time in
study. Be a student so long as you still have something to learn,
and this will mean all your life. –Henry L. Doherty



CHAPTER 1

Group theory

The ultimate objective of this book, as mentioned in the Preface is a calculation
of the mass splitting of the nucleon P11(939) and the delta-baryon ∆33(1232) due
to the hyperfine interaction. (Don’t worry about what those symbols mean for now.
We’ll get to all that in short order.) In order to achieve this ultimate objective,
we’ll need to learn some mathematical tools as well as some physics.

The first mathematical tool we’d like to take into our hands is that of group the-
ory. Group theory is simply the mathematical expression of the fact that, roughly
speaking, if you do certain operations twice, it’s the same thing as doing the opera-
tion once, but perhaps in a slightly modified fashion. Think of moving (translating)
an object from point A to point B. And then from B to C. It’s the same as just
translating it from A to C directly. This idea works not just for translations, but
for rotations and other transformations, as well.

We now turn to the rather abstract context of rotations of quantum objects
like electrons. Of course, we’ll relate this to more familiar contexts as we go along.

1. Spinors

In a very loose and not-rigorous sense, group theory is the generalization of the
algebra of real numbers to an algebra of matrices. (I should caution you though
that group theory is more abstract than this and doesn’t really depend on matrices
at all.)

Suppose we have a pair of complex numbers ψ1, ψ2 which we write as a sort of
vector:

ψ =

(

ψ1

ψ2

)

. (1.1)

Further suppose that all we’re concerned with, for now, is the norm1 (think of it
as a sort of generalized length) of this vector. The norm |ψ|2 is defined by

|ψ|2 = ψ∗
1ψ1 + ψ∗

2ψ2, (1.2)

where ψ∗
1 is the complex conjugate of ψ1 = ψ1,r + iψ1,i defined by

ψ∗
1 = ψ1,r − iψ1,i, (1.3)

1New math terms or definitions appear bold.
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2 1. GROUP THEORY

where ψ1,r, ψ1,i are the real and imaginary parts of the complex number ψ1.
2 We

have a short-hand way of writing the expression for the norm:

ψ† = (ψ∗
1 , ψ

∗
2) (1.4)

|ψ|2 = ψ†ψ (1.5)

= (ψ∗
1 , ψ

∗
2)

(

ψ1

ψ2

)

= ψ∗
1ψ1 + ψ∗

2ψ2

= |ψ1|2 + |ψ2|2 . (1.6)

The superscripted “dagger,” † instructs us to take the complex conjugate of each
element or component, ψ1 or ψ2 in the vector (or, in case we’re dealing with
matrices, each element of the matrix) and then transpose it. The “transpose”
operation means ‘interchange the rows and the columns.’ The composite operation
(“complex conjugate & transpose” or “transpose & complex conjugate”, the order
doesn’t matter) is called Hermitian conjugation.

Exercise 1.1. Starting with the complex vector

ψ =

(

ψ1

ψ2

)

, (1.7)

show that we end up with the matrix

ψ† = (ψ∗
1 , ψ

∗
2) , (1.8)

whether we do:

(i) complex conjugate then transpose;
(ii) transpose then complex conjugate.

This is how we calculate the norm of a two-dimensional complex vector. (Actu-
ally, you can generalize everything we’ve covered so far to the case of N -dimensional
complex vectors.) Two-dimensional complex vectors have a name – spinors. The
norm of a spinor is an important physical quantity – I won’t tell you why just now,
but just remember that we’re learning how to calculate it because it’s important
for the physics of quantum objects like electrons.

Now, since only the norm of ψ is important, we can ‘play around’ with the
components ψ1, ψ2 in a certain way without changing the value of the norm. This
‘certain way’ is, more specifically, taking linear combinations of the ψ1 and ψ2.
For example, −5ψ1 + (8 + iπ)ψ2 is one such linear combination of the spinor’s
components among infinitely many such linear combinations – we could have chosen
any complex numbers in place of −5 or (8 + iπ). Since the original spinor, ψ has
two components, ψ1 and ψ2, we need to form two such linear combinations so
that the new spinor which we’ve ‘played’ with, or transformed, is still a two-
dimensional complex vector. We can codify this mathematically using a “2-by-2”
complex matrix. Here’s how.

Suppose I have a square matrix U with two rows and two columns (a “2-by-2”
matrix) with complex numbers a, b, c, d for entries:

U =

(

a b
c d

)

. (1.9)

2I’m assuming that you know how to do complex arithmetic and you know that i ≡
√
−1.
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(It’s “square” because the number of the number or rows and columns are the same.)
Now, take this matrix and multiply it from the left (with matrix multiplication) by
the spinor ψ:

Uψ =

(

a b
c d

)(

ψ1

ψ2

)

=

(

aψ1 + bψ2

cψ1 + dψ2

)

= ψ′, (1.10)

where we’ve given this new spinor a name, ψ′. So you see that we’ve formed two
linear combinations, one for the upper component (aψ1+bψ2) and one for the lower
component (cψ1 + dψ2), by multiplying the spinor ψ by a single “2-by-2” matrix.

(I’m assuming that you know how to multiply matrices here. By way of a very
brief review, if the matrix C is a product of two matrices A and B, C = AB then
in terms of components is

Cik =
N
∑

j=1

AijBjk (1.11)

where C is an Cr×Cc matrix, A is a Cr×N matrix, B is a N×Cc matrix. A spinor
is a 2-by-1 matrix. Also remember that matrix multiplication is not commutative
– this means that for matrices AB 6= BA.)

Let’s work this out first without specific reference to matrices. We’re studying
the transformation of the norm under the action of the matrix U so we now calculate
the norm of the new, transformed spinor:

|ψ′|2 = |ψ′
1|

2
+ |ψ′

2|
2

= (aψ1 + bψ2)
∗(aψ1 + bψ2) + (cψ1 + dψ2)

∗(cψ1 + dψ2)

= (a∗ψ∗
1 + b∗ψ∗

2)(aψ1 + bψ2) + (c∗ψ∗
1 + d∗ψ∗

2)(cψ1 + dψ2)

= (|a|2 + |c|2) |ψ1|2 + (|b|2 + |d|2) |ψ2|2

+ (a∗b+ c∗d)ψ∗
1ψ2 + (ab∗ + cd∗)ψ1ψ

∗
2 . (1.12)

Clearly, for arbitrary complex numbers a, b, c & d the norm of the transformed

spinor |ψ′|2 is not the same as the norm of the original spinor |ψ|2, since the last

two terms of the last line of Eq.(1.12) don’t appear in the expression for |ψ|2. But

what if we require that |ψ|2 = |ψ′|2. This places constraints among a, b, c & d.
The next exercise asks you to produce the equations expressing these constraints:

|a|2 + |c|2 = 1 (1.13a)

|b|2 + |d|2 = 1 (1.13b)

a∗b+ c∗d = 0 (1.13c)

ab∗ + cd∗ = 0. (1.13d)

(The last equation is just the complex conjugate of the second-to-last one, and so
doesn’t have any independent information.)

Exercise 1.2. Derive Eqs.(1.13) by writing down Eq.(1.12) (doing the algebra

for yourself) and requiring |ψ|2 = |ψ′|2.
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Using these equations we can derive the relations

|b|2 = |c|2 (1.14)

|a|2 = |d|2 . (1.15)

Exercise 1.3. Derive these from the equations above.

This is a good time to introduce a more compact and advanced notation. It
will pay us later to invest a little time now learning short-hand ways of writing the

expression for the norm. Consider the norm of the transformed spinor, |ψ′|2. We’ll
start with the definition of the norm from Eq.(1.6) and substitute in the transformed
spinor in terms of the transformation matrix U and the original spinor, ψ:

|ψ′|2 = (ψ′)†ψ′

= (Uψ)†Uψ (1.16)

= ψ†U†Uψ. (1.17)

Let’s examine the last line of the above derivation. To get there we used

(Uψ)† = ψ†U†. (1.18)

Exercise 1.4. Prove Eq.(1.18) by first calculating (Uψ)† and then ψ†U† with
U and ψ given by

U =

(

a b
c d

)

ψ =

(

ψ1

ψ2

)

, (1.19)

showing that they are equal.

Continuing from Eq.(1.17) and using the fact that the transformation induced
on ψ by U doesn’t change the norm, we get a constraint on the matrix U :

|ψ′|2 = |ψ|2 (1.20)

=⇒ ψ†U†Uψ = ψ†ψ (1.21)

=⇒ U†U = 112. (1.22)

Here, 112 is the unit matrix in two dimensions (denoted by the subscript ‘2’), which
has the explicit form

112 =

(

1 0
0 1

)

(1.23)

The important point here is that Eq.(1.22) contains the same information as

the constraints expressed in Eqs.(1.13) which were obtained by working out |ψ′|2 as
in Eq.(1.12). Equation (1.22) is, incidentally, referred to as a unitarity constraint
on the transformation matrix, U and defines U as a unitary matrix. Let’s see in
detail how the unitarity constraint on U had the same information as Eqs.(1.13)
by working out the following exercise.

Exercise 1.5. Show that the matrix equation U†U = 112, written explicitly as
(

a b
c d

)†(
a b
c d

)

=

(

1 0
0 1

)

, (1.24)

gives Eqs.(1.13) by: i) performing the Hermitian conjugate action (†) on the left-
most matrix above; ii) multiplying the resulting matrices; iii) equating each of the
four elements of the left-and right-hand sides of the equality.
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The obvious advantage in this more compact matrix notation is that we never
had to ‘open-up’ the object U to get the constraint Eq.(1.22). Also, we never had
to refer to the components of ψ, ψ1 and ψ2. The convenience of the compact matrix
notation is obvious. Note, however, that we only introduced the matrix notation
after we got some experience working with the component notation. This is a good
rule to follow generally – when tempted to work with compact notation, we should
make sure that we understand how it works in terms of the quantities and elements
that comprise the short-hand forms. This way we’re sure not to misinterpret their
meanings and make a mistake in their manipulation.

Enough pedagogical advice – let’s use what we’ve learned so far to simplify
the form of the transformation matrix, U . Doing this will allow us to more simply
understand the transformation in terms of group theory and to see why group
theory forces U to take this specific simplified form. What we mean by ‘simplify
the form of U ’ is this – we’ll rewrite U in terms of the fewest number of its complex
number elements a, b, c, and d as possible. Since we have the relationships between
these elements provided by the constraints of Eqs.(1.13), we can eliminate some of
these elements in favor of others. Actually, it’s a little easier to do this simplifying
algebra if we introduce another quantity – the determinant of U .

The determinant of a 2-by-2 matrix M is defined by

M =

(

m1 m2

m3 m4

)

(1.25)

detM = m1m4 −m2m3. (1.26)

The determinant, which is likely familiar to you already, is so important that
we’ll pause for a digression on its properties. In the following subsection, we prove
some important properties of the determinant before returning to the issue of sim-
plifying U in terms of its elements.

1.1. Properties of determinants. Recall the equation for the determinant
of a 2-by-2 matrix:

M =

(

m1 m2

m3 m4

)

(1.27)

detM = m1m4 −m2m3. (1.28)

The determinant is just a way of getting a single, complex number from a square
matrix. It has the following properties:

a) detU1U2 = detU1 detU2;
b) detUT = detU ;
c) detU† = (detU)∗;
d) det aU = a2 detU (for rank 2 only!)
e) detU−1 = 1

det U ;

f) det

(

a b
kc kd

)

= k det

(

a b
c d

)

(common row factor);

g) det

(

ka b
kc d

)

= k det

(

a b
c d

)

(common column factor).

Please note that all of these (except the one noted exception) are applicable
for rank-n (n-by-n) matrices.
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Exercise 1.6. Prove the above properties of the determinant. Extra credit:
generalize det aU to the case where U is a rank–n matrix.

Resuming our pursuit of the simplest form for U allowed by the unitarity con-
straint on U , Eq.(1.22) (or equivalently Eqs.(1.13)), we’ll first need to use a property
of the determinant that we just proved.

Exercise 1.7. Using property ‘c’ of the determinant and Eq.(1.22), show that

|detU |2 = 1. (1.29)

Exercise 1.8. Show that the determinant of U in Eq.(1.31) can be expressed
in either of the two forms

detU = − b

c∗
, detU =

a

d∗
, (1.30)

using Eqs.(1.13a–1.13c).

Using these we can rewrite transformation matrix U as

U =

(

a b
−b∗ a∗

)

. (1.31)

Exercise 1.9. Using this form of the matrix U , multiply it (from the left, of
course) on ψ, use Eqs.(1.13) and show that the norm of the resulting spinor is the

same as |ψ|2.
Before we move on to the next section and consider group theory in a more

general sense, let’s have a look at what we’ve done. We started with the matrix
U in Eq.(1.9) which has 4 complex numbers, each of which has two independent
real components for a total of 8 independent real numbers making up the matrix
U . Then we require that the matrix U doesn’t change (“leaves invariant”) the

norm of the spinor ψ, |ψ|2. This imposes four conditions on the elements of U :
Eqs.(1.13a,1.13b) are each one condition since they are relations among real – not
complex – quantities, while Eq.(1.13c) gives two conditions since it’s a relation
among complex quantities. So we’re down to just 4 independent real numbers –
these are just the real and imaginary parts of a and b the only complex numbers
that appear in Eq.(1.31) for U . (Note that complex numbers are not independent
of their complex conjugates, eg. a∗ isn’t independent of a.) The fact that the
determinant of U , detU = 1 (as you proved in Ex.(1.8)) is due to the fact that

|a|2 + |b|2 = 1. So you can see that a and b have one relation between them and
therefore there are only 3 independent real numbers in U . (I have cheated here –
Eqs.(1.13) fix the ratios of b/c∗ and a∗/d only up to a phase factor, eiα, and I’ve
arbitrarily chosen α = 0. We’ll return to this point at the end of the chapter.

2. Group properties

Now that we’ve some some “real” world (that is, real “quantum mechanical
world”) examples of groups (U(2) and SU(2)) and the objects they operate on
(spinors) let’s firm up the mathematical definitions of these sets. The essential
properties of the abstract group consisting of a set of elements and given a group
product are:

• closure: the product of two elements is itself in the set;
• associative: U1(U2U3) = (U1U2)U3;
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• unit element 11: 11U = U11 = U ;
• inverse U−1: UU−1 = U−1U = 11.

We can show that the objects U(2) and SU(2) are, in fact, groups by consid-
ering representatives from each of these groups and checking that they satisfy the
specific properties above. The only property that we didn’t explicitly check was the
associtative rule. But it’s a fact that matrix multiplication satisfies the associative
rule and we won’t explicitly check this.

Let’s have a quick review of U(2) and SU(2).

2.1. U(2). A general form for the elements of U(2) is

U =

(

a b
−b∗eiα a∗eiα

)

(1.32)

detU = eiα (1.33)

and we have proved that these elements satisfy the unitarity condition

U† = U−1. (1.34)

Recall that these equations define elements of the group U(2) of “unitary matrices
of rank 2.” Let’s check that U ’s of the form of Eq.(1.32) (that is, U ∈ U(2) – this
reads: ‘U is an element of U(2)’) are closed (see the closure property above)
under matrix multiplication.

Exercise 1.10. Suppose U1, U2 ∈ U(2).

U1 =

(

a1 b1
−b∗1eiα1 a∗1e

iα1

)

U2 =

(

a2 b2
−b∗2eiα2 a∗2e

iα2

)

. (1.35)

Show that the resulting matrix, U = U1U2 satisfies U ∈ U(2). In order to do this,
you need to show that: i) detU = ei(α1+α2) and ii) Eqs.(1.13) are satisfied for the
elements of U .

2.2. SU(2). The general form for the elements of SU(2) are obtained from
that of U(2) by setting α = 0 =⇒ eiα = 1:

U =

(

a b
−b∗ a∗

)

(1.36)

detU = 1. (1.37)

These equations define the elements of SU(2) the group of “special unitary matrices
of rank 2.”

Exercise 1.11. Repeat Ex.(1.10) for SU(2) using the results from Ex.(1.10).
Don’t multiply matrices out! Be clever.

3. Lie algebra

Now, let’s specialize to the group SU(2). This is what’s called a Lie group
(named after the Norwegian mathematician Sophus Lie who lived in the latter half
of the nineteenth century). We’ve shown that the form of the elements of SU(2)
can be written

U =

(

a b
−b∗ a∗

)

(1.38)
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and that the condition detU = 1 means that there are three independent real
numbers or parameters within the complex numbers a and b. Our goal in this
section is to use the properties of the Lie algebra, denoted su(2), to write the
matrix U of Eq.(1.38) in the form

U = eiσ·θ. (1.39)

This is probably something new to you – we’re taking the exponential function of
an argument which isn’t a real number, as we’re used to doing, but a matrix, σ · θ.
(Don’t worry about exactly what σ · θ is right now. It’ll become clear as we go on.
Just be aware that it’s a rank–2 matrix.)

Let’s rewrite Eq.(1.38), separating the real and imaginary parts of a and b. We
write:

U = ar

(

1 0
0 1

)

+ ibi

(

0 1
1 0

)

+ ibr

(

0 −i
i 0

)

+ iai

(

1 0
0 −1

)

(1.40)

= ar11 + iu · σ (1.41)

where we’ve defined

u =





bi
br
ai



 σ =





σ1

σ2

σ3



 (1.42)

σ1 =

(

0 1
1 0

)

; σ2 =

(

0 −i
i 0

)

; σ3 =

(

1 0
0 −1

)

, (1.43)

where we’ve used the definition for the scalar product (or ‘dot product’)

u · σ = u1σ1 + u2σ2 + u3σ3. (1.44)

Exercise 1.12. Work out Eqs.(1.40,1.41).

A lot has happened here, so let’s sift through the pile carefully. The first thing
we did was to break up the matrix U into real and imaginary components of the
parameters a, b. You see that you get the unit matrix 11, and after factoring out an
i =

√
−1 we get three more matrices σ1, σ2, σ3 which are often written as a vector,

σ. (In fact sometimes the labels 1,2,3 are written as x, y, z.) These are a special set
of matrices that arise all the time in the physics of spin-1

2 particles. They’re called
the Pauli matrices and they have special properties. Let’s write these down and
then I’ll explain them:

[σ1, σ2] = 2iσ3

[σ2, σ3] = 2iσ1

[σ3, σ1] = 2iσ2. (1.45)

This is the Lie algebra. We have a new object here: [ , ] called the commuta-
tor. It’s defined as

[A,B] = AB −BA (1.46)

and has the property that

[A,B] = − [B,A] . (1.47)

Clearly, if either (or both) A and B are real numbers the commutator is zero.
Since matrix multiplication isn’t commutative, the commutator of matrices is, in
general, not zero. (Though there are other objects which are not matrices that
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don’t commute. Just a warning that commutators are useful for things other than
matrices, but we’ll confine our attention to just matrices for now.)

Exercise 1.13. Prove Eq.(1.47) from the definition in Eq.(1.46).

Exercise 1.14. Prove Eqs.(1.45).

So you can see from Eqs.(1.45) that there is a sort of closure of the Pauli
matrices under the action of the commutator. I’m not saying that the Pauli matrices
form a group. They don’t. They are the elements of a special sort of vector space
called a Lie algebra. Just keep this in the back of your mind for now.

Exercise 1.15. Prove that the Pauli matrices {σ1, σ2, σ3} don’t form a group.

In fact, going back to Eq.(1.40), what we have done is write the general element
of SU(2) in terms of a basis of matrices consisting of the identity matrix and the
Pauli matrices. And any element in SU(2) can be written this way in terms of the
parameters ar, bi, br, ai and the basis matrices {11,σ}. (Remember that there are
only three independent paramters since they’re related by

a2
r + b2i + b2r + a2

i = 1. (1.48)

Notice something else about the Pauli matrices. They’re traceless. If we have
an n-by-n matrix A then the trace is defined as

Tr A =
n
∑

i=1

Aii, (1.49)

just the sum of the diagonal elements. So the Pauli matrices have

Tr σi = 0. (1.50)

Exercise 1.16. Using Eq.(1.36) calculate the Tr U.

Exercise 1.17. Using Eq.(1.41) calculate the Tr U. Compare to your result
from Ex.(1.16). Do they agree?

Now, onto the coup de grace – proving Eq.(1.39). Suppose that we write

ar = cos θ (1.51)

then Eq.(1.48) is satisfied if we take

u = θ̂ sin θ (recall Eq.(1.42)) (1.52)

θ̂ =
θ

θ
(1.53)

θ =





θ1
θ2
θ3



 (1.54)

θ =
√

θ21 + θ22 + θ23. (1.55)

Then we have, if we substitute into Eq.(1.41)

U = cos θ + iσ · θ̂ sin θ (1.56)
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and now, we’ve renamed our independent parameters from ar, br, bi to θ = (θ1, θ2, θ3)

(or θ = (θx, θy, θz)). The symbol θ̂ is the symbol for a unit vector which points in
the direction of the axis about which we’ll rotate the system:

θ = (θx, θy, θz) (1.57)

= θxx̂ + θyŷ + θz ẑ (1.58)

θ̂ = θ/θ (1.59)

= θ̂xx̂ + θ̂yŷ + θ̂z ẑ (1.60)

θ̂x = θx/θ θ̂y = θy/θ θ̂z = θx/θ (1.61)

θ =
√

θ2x + θ2y + θ2z . (1.62)

Let’s work through this with some problems.

Exercise 1.18. Determine the variables (bi, br, ai) in terms of (θ, θ̂x, θ̂y, θ̂z).

Exercise 1.19. Prove that Eq.(1.48) is satisfied by Eqs.(1.51,1.52).

Exercise 1.20. Write out Eq.(1.56) in terms of its elements. Each element is
a cos or sin function muliplied by coefficients which are complex numbers formed

from the components of θ̂.

Exercise 1.21. When we wrote ar = cos θ we assumed that |ar| ≤ 1 (why do
I say this?). Prove that this indeed the case from the condition detU = 1.

Exercise 1.22. Calculate the determinant of U using Eq.(1.56).

Exercise 1.23. Calculate the trace of U using Eq.(1.56). Compare to the
results for Ex.(1.16) and Ex.(1.17).

Now we turn to the formidable task of proving Eq.(1.39). We know how to take
exponential functions of real arguments. Simply raise the number e = 2.7813 to that
power. Rigorously though, any function is defined by its series expansion. Given
a function whose derivatives all exist in an open neighborhood of x, Taylor’s
theorem says that

f(x) =
∞
∑

n=0

f (n)(0)

n!
xn, (1.63)

where f (n)(x) = dnf(x)
dxn and f (n)(0) = f (n)(x)

∣

∣

x=0
.

Exercise 1.24. Using Taylor’s theorem, prove that the series expansion of
ex =

∑∞
n=0

xn

n! .

Now that we know, rigorously, how to take the exponential function of a real
number, x, let’s think about how to take the exponential function of a complex
number, z. Letting z = x+ iy we have

ez = exeiy. (1.64)

We already have done ex. What about eiy? This is a weird thing. if I write it out
numerically for, say y = 3 then we have

eiy = (2.7813)3
√
−1 (1.65)
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and it’s not at all clear what to do with this. We do know, however, how to multiply
(and divide, etc.) complex numbers. That suggests we might get somewhere if we
use the series representation for the exponential function from Ex.(1.24).

Exercise 1.25. From eiy =
∑∞

n=0
(iy)n

n! prove that eiα = cosα+ i sinα.

Now that we know how to exponentiate complex numbers like z = x + iy, we
can ask: how do we exponentiate matrices as in Eq.(1.39)? Answer: go to the series
representation!

First we need some background on how to take products (ie., multiply) the
Pauli matrices.

Exercise 1.26. Prove that σiσi = 1 for i = 1, 2, 3.

This next exercise is simply a more concise restatement of Eqs.(1.43).

Exercise 1.27. Show that [σi, σj ] = 2i
∑3

k=1 εijkσk. Here εijk = 1 if ijk =
123, 231, 312, εijk = −1 if ijk = 132, 321, 213, and εijk = 0 if i = j or j = k or
k = i. The εijk is called the Levi-Civita tensor.

Exercise 1.28. Using Exs.(1.26) and (1.27) show that σiσj = δij+i
∑3

k=1 εijkσk.
Here δij = 1 if i = j and δij = 0 if i 6= j.

Exercise 1.29. Now, using the last four problems we can show that U = eiσ·θ.
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4. Rotations in 2 and 3 dimensions

This section is a bit of a detour, a denouement from the main track of the
chapter. It serves as a conduit to understanding what spinors are and what the
transformation matrix of Eq.(1.39) (or Eq.(1.56)) does to spinors. It does this by
looking at rotations of good old regular vectors in two and three dimensions.

What we’ve done so far is to figure out the structure of the elements of U(2),
SU(2) and we briefly had a look at the Lie algebra of SU(2) (which is often denoted
su(2)). But what are these things? Well, just confining our attention to SU(2),
we’ll find out soon enough that these elements (like U(θ) of Eq.(1.56)) correspond
to rotations of things described by Pauli spinors, like electrons and quarks and
nucleons, and Σ− hyperons – any spin− 1

2 particles, in fact.
But first, let’s study how rotations work in two and three dimensions; that is,

how do vectors in two and three dimensions transform under rotation?
Starting with two dimensions (2D), we have a vector

r =

(

x
y

)

(1.66)

x = |r| cos θ, y = |r| sin θ (1.67)

x
′

ŷ

y

y
′

x̂

r

r′

x

Figure 1. The rotation of the vector r to r′.
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which is rotated to

r′ =

(

x′

y′

)

(1.68)

x′ = |r| cos θ′, y′ = |r| sin θ′ (1.69)

where the angles θ and θ′ are measured with respect to the x̂ axis. See Fig.(1).
Note that the same length, |r| appears for both vectors r and r′ since rotations
don’t change the lengths of vectors. They merely turn them while keeping their
length fixed.

Exercise 1.30. Prove Eqs.(1.69) by looking at Fig.(1) and assuming |r′| = |r|.
The angle between r′ and the x−axis is θ′.

We can get from r to r′ (“transform r to r′”) by applying a matrix, an element
of SO(2) in fact (we’ll find out what the ‘O’ means in a minute) called R(φ):

r′ = R(φ)r (1.70)

R(φ) =

(

cosφ − sinφ
sinφ cosφ

)

(1.71)

where we can use popular trigonometric identities (angle addition formulas) to
prove that

φ = θ′ − θ. (1.72)

So φ is angle between r and r′.

Exercise 1.31. Prove Eq.(1.72).

Now that we have the matrix R(φ) we can have a look at some of its properties.

Exercise 1.32. Show that R(φ) has detR = 1.

Exercise 1.33. Show that R−1(φ) = RT (φ) = R(−φ) by applying the general
formula for the inverse of a 2-by-2 matrix that you’ve derived earlier. Note that
there are two equalities to prove.

The problem in Ex.(1.33) shows that the inverse of the matrix R(φ) is equal
to its transpose. (Remember that transpose just means: interchange rows and
columns.) And this is where the ‘O’ comes from in SO(2) meaning “orthogonal.”3

That is: orthogonal ⇔ R−1 = RT . So SO(2) is the group of matrices of ‘special
orthogonal’ matrices of rank 2.

Exercise 1.34. Where does the ‘S’ meaning ‘special’ come from? Show that
|r′|2 = r′ · r′ is equal to |r|2 because of this.

Exercise 1.35. Prove that these matrices form a group.

Exercise 1.36. Show that this group is Abelian, meaning R1R2 = R2R1 by
considering

R1 =

(

cosφ1 − sinφ1

sinφ1 cosφ1

)

, R2 =

(

cosφ2 − sinφ2

sinφ2 cosφ2

)

.

3Strictly speaking, orthogonal transformations preserve the inner product.
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That SO(2) is Abelian means that the operation of rotations about a single
axis (the rotations we have been considering here are about the axis perpendicular
to the x − y plane) commute with each other – the order in which we do two
rotations doesn’t matter. We end up with the same vector (starting with the same
vector initially) whatever order we choose to do the rotations in. This will not be
the case in three dimensions where rotations do not commute.

Now that we have the rotation matrices, R(φ) in two dimensions, it makes the
difficult task of understanding the three dimensional (3D) analogs a little easier.
Again we start with the 3D vector r

r =





x
y
z



 (1.73)

x = |r| sin θ cosφ, y = |r| sin θ sinφ, z = |r| cos θ (1.74)

which is rotated to

r′ =





x′

y′

z′



 (1.75)

x′ = |r| sin θ′ cosφ′, y′ = |r| sin θ′ sinφ′, z′ = |r| cos θ′ (1.76)

where the angles θ and φ are measured with respect to the x̂ and ẑ axes, respectively.
See Fig.(2), which shows only the vector r. The rotation still takes r → r′ but the
figure is too messy if we put both vectors on it. (And I couldn’t find a picture of it
on the web!)

The 3D rotation matrix, which we will call R(θ), is more complicated than
the 2D case. In 2D there is only one rotation axis (perpendicular to the x − y
plane) and the group structure is particularly simple. In 3D, there are an infinite
number of possible directions or axes about which we may rotate a given vector.
This makes writing down a single, simple closed form for the rotation matrix, R(θ)
more difficult. I’ll just show it so you can say you’ve seen it. We now have to specify

Figure 2. The vector r in spherical coordinates.
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a vector θ = (θ1, θ2, θ3) = (θx, θy, θz) (we use (1, 2, 3) or (x, y, z) interchangeably)
since we’re specifying a rotation about a particular axis:

r′ = R(θ)r (1.77)

R(θ) = eiJ·θ (1.78)

J · θ = Jxθx + Jyθy + Jzθz (1.79)

Jx = i





0 0 0
0 0 −1
0 1 0



 , Jy = i





0 0 1
0 0 0
−1 0 0



 , Jz = i





0 −1 0
1 0 0
0 0 0



 . (1.80)

The R(θ) is an exact analog to the U(θ) [Eqn.(1.56)] of SU(2). (Except here, we
are rotating the a vector in 3D space and in the previous sections we were rotating
a spinor in spinor space.)

The components of the vector J satisfy the Lie algebra

[Ji, Jj ] = iεijkJk (1.81)

and the rotation matrix is orthogonal

R−1 = RT . (1.82)

Exercise 1.37. Show that [Jx, Jy] = iJz.

Exercise 1.38. Show that R−1(θ) = RT (θ) = R(−θ). Don’t write out the

Ji’s. You can use the fact that (eA)T = eAT

to do this simply. It should only take
you three or four lines.

Rotations about the axes x or y or z through an angle θ are simple. You can
derive the expressions for these rotations in the same way you showed that Eq.(1.56)
can be written

eiσ·θ = cos θ + iσ · θ̂ sin θ. (1.83)

Exercise 1.39. Show that:

Rx(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ



 , Ry(θ) =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 ,

Rz(θ) =





cos θ − sin θ 0
sin θ − cos θ 0

0 0 1



 (1.84)

by taking θ = θx̂ for Rx, θ = θŷ for Ry, and θ = θẑ for Rz in Eq.(1.78).

Let’s show explicitly that rotations in 3D don’t commute.

Exercise 1.40. Using the angle θ = π
2 , work out the action of Rx(θ) then

Ry(θ) on the vector r =





0
0
1



. Then work out the action of Ry(θ) then Rx(θ) on

the same initial vector. In symbols, show that RyRxr 6= RxRyr. Make diagrams of
these two different operations by drawing, on two (x, y, z) graphs, the initial vector,
r, the vector after applying the first rotation, and the final vector.
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5. Rotations of spinors

Now that we’re expert at rotating regular, good old vectors in 2D and 3D let’s
consider the more abstract problem of rotating an electron. An electron, as we’ve
learned, is described in the quantum theory by a two-dimensional (not the same
2D plane where we rotated the good old vectors of the last section) sort of vector
called a spinor. We need to figure out what mathematical operator we need to
apply to the spinor to rotate it.

[Aside: This is an exact analog to what we did earlier in the chapter. There,
the operator was the matrix R(θ) and we applied it to vectors, r in which ‘inhabit’
the 3D vector space which is often referred to as R

3, the Euclidean space of
three dimensions.]

We already know most of the mathematics necessary to rotate spinors – we
learned it in sections 1–3. We’ll walk through the process of rotating a spinor by
doing some exercises.

When we measure the spin of an electron or a quark4 – in fact, any spin–1
2

particle – we always find that it has only two values: either +1
2~ or − 1

2~. The
constant,

~ =
h

2π
= 1.054 571 68(18) × 10−34 J s

= 6.582 119 15(56) × 10−22 MeV s

~c = 197.326 968(17) MeV fm, (1.85)

is called Planck’s constant. It is a measure of the ‘granularity’ of the quantum
world. As an example, if you had a photon, γ (a ‘quantum’ of the electromagnetic
field) of frequency ν, then its energy is

Eγ = hν (1.86)

and only that amount of energy (for this frequency) can be exchanged between
the electromagnetic field and something else (like an electron, for example). These
numbers for ~, no matter what conventional units that you use to describe them, are
indecipherably small. That’s why the quantum physics is usually5 only important
when we deal with submicroscopic objects like electrons and quarks.

Notice that ~ has the units of angular momentum:

[~] = J s = kg m2 s−1

= m kg
m

s
= [r][mass][v]

= [r × p] (1.87)

([ ] means “units of”) and we recognize r×p as the orbital angular momentum L.
(From here on out we shall assume that we are using a set of units where ~ = c = 1
and so neither ~ nor c will appear in our formulas.)

4One way to measure the intrinsic spin of a particle is to subject it to an external magnetic
field and observe, for example, the Zeeman effect.

5There are some cases where macroscopic objects can exhibit quantum behavior. For exam-
ple, a several ton aluminum cylinder, suspended in a vat of liquid helium, oscillates like a quantum

mechanical object. This could be used as a gravitational wave detector.
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(When we measure the spin of the electron, we’re not measuring L. The orbital
angular momentum is the angular momentum of an electron as it moves around
some point in space. The intrinsic angular momentum – the “spin” – is the angular
momentum that the electron has because it looks like it’s spinning – but it’s not
really? Confusing, isn’t it?)

Turning now to the spinor description of the electron, if we know that electrons
are described mathematically by spinors and we know that measuring an electron’s
spin can result in only one of two possible values, +1

2 ,− 1
2 then which spinors

describes an electron with spin–‘up’ or ‘down’ along the z−axis? You might guess
that they’re given by:

| + 1
2 〉 = | ↑〉 =

(

1
0

)

, | − 1
2 〉 = | ↓〉 =

(

0
1

)

. (1.88)

These spinors are eigenvectors (‘eigen’ means ‘characteristic’ in German) of the
Pauli matrix, σz which means that when you operate on the spinor with σz you get
the same spinor back (the components are the same) times some number as follows:

σz| ↑〉 = (+1)| ↑〉
σz| ↓〉 = (−1)| ↓〉. (1.89)

Exercise 1.41. Verify these equations using the expression for the Pauli ma-
trices, Eqs.(1.43).

Those numbers on the right-hand-side, ±1, are the spins of the electron. “But,”
you think, “you said that the spin could have one of two values, +1

2 or − 1
2 . Not

±1.” That’s because the spin is actually defined as:

S =
1

2
σ (1.90)

S = (Sx, Sy, Sz). (1.91)

Incidentally, we’ve introduced a new notation here, the ket, | 〉. In the quantum
theory, systems are described by quantum states or just ‘states’. The ket is a
generic symbol for writing a ‘state’ of a system – you can put just about any symbol
inside the ket, like | ↑〉 or |ψ〉, to denote different states. And a spinor describes the
spin state of a spin-1

2 particle, like an electron. The ket has a natural ‘partner’
called a bra, written 〈 |. For spinors, the bra is the Hermitian conjugate of the ket.

|ψ〉† =

(

ψ1

ψ2

)†
= (ψ∗

1 , ψ
∗
2) = 〈ψ|. (1.92)

Soon, we’ll see where the weird names ‘bra’ and ‘ket’ come from.
Now, we’re in a position to ask a more general question. Suppose a general

spinor is given as

ψ =

(

ψ↑
ψ↓

)

= ψ↑

(

1
0

)

+ ψ↓

(

0
1

)

= ψ↑| ↑〉 + ψ↓| ↓〉 (1.93)

Now, this is not an eigenstate of σz or Sz.

Exercise 1.42. Prove thate Eq.(1.93) is not an eigenstate of σz.
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Therefore, the electron described by this spinor doesn’t have a definite spin
state. We’ll see this a lot: if a particle’s state is not described by an eigenvector of
some operator (like Sz) then we’re not guaranteed to get a particular value when
we measure the quantity corresponding to that operator.

In fact, the situation that we have in the case of the spin of an electron described
by the spinor of Eq.(1.93) is that when we measure it’s spin along the z−direction
we can get either + 1

2 or − 1
2 !!! This is quantum weirdness at its best. The state

of an electron is described by a mathematical object that gives you either possible
value of the spin along the z−direction. If you know the story of Schrödinger’s cat,
you should be thinking of that beast’s uncertain fate right now.

There is something we can determine though, from the spinor of Eq.(1.93). We
can figure out the relative probability that a measurement gives you the values +1

2

or − 1
2 from it. Here’s how.
Consider a general spinor, ψ. It can be represented, as we’ve seen, by a complex

column vector of which we can take the Hermitian conjugate (complex conjugate
then transpose):

ψ = |ψ〉 =

(

ψ1

ψ2

)

ψ† = 〈ψ| = (ψ∗
1 , ψ

∗
2) . (1.94)

If we have two general spinors χ and ψ then we define their overlap as:

〈χ|ψ〉 = χ†ψ (1.95)

= (χ∗
1, χ

∗
2)

(

ψ1

ψ2

)

(1.96)

= χ∗
1ψ1 + χ∗

2ψ2. (1.97)

This is just the generalization of the dot or scalar product for regular vectors,
r1 · r2 which has the geometric interpretation of being the projection of r1 along
r2 (or vice versa). So the overlap is the “projection of χ onto ψ.” Here, too, we
see the origin of the names ‘bra’ and ‘ket’ – when they are sandwiched together
like this 〈 | 〉 they look like a ‘bracket’. This terminology is due to Paul Adrienne
Maurice Dirac, one of the great physicists of the 20th century and a founder of the
quantum theory.

Now, it’s simple to see the answer to our question: What is the probability that
a given measurement of the spin along the z−direction of an electron described by
the spinor ψ gives ± 1

2? It must be related to the projections:

〈↑|ψ〉 = 〈↑ |
(

ψ↑| ↑〉 + ψ↓| ↓〉
)

= ψ↑ (1.98)

〈↓|ψ〉 = 〈↓ |
(

ψ↑| ↑〉 + ψ↓| ↓〉
)

= ψ↓, (1.99)

where we’ve used the facts that

〈↑|↑〉 = 〈↓|↓〉 = 1 (1.100)

〈↑|↓〉 = 〈↑|↓〉 = 0. (1.101)

Exercise 1.43. Prove these equations from the definitions of | ↑〉 and | ↓〉 in
Eq.(1.88)

But ψ↑ and ψ↓ can’t directly be the probabilities. Why not? Think about it.
A probability is the chance that something happens. “Four out of five dentists.”
This ratio, 0.8, is a real number. But what are ψ↑ and ψ↓? Are they real?
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Exercise 1.44. What sort of numbers are ψ↑ and ψ↓?

In fact, it turns out, and it’s not at all obvious that it turns out this way –
you’ll just have to take Max Born’s word for it (Born was a 20th century German
mathematician and physicist who worked on the foundations of the quantum theory
for which he won the Nobel prize in physics in 1954), that the probabilities for
getting spin–up or spin–down answers from ψ, P↑(ψ) or P↓(ψ) are

P↑(ψ) = |〈↑|ψ〉|2 = |ψ↑|2 (1.102)

P↓(ψ) = |〈↓|ψ〉|2 = |ψ↓|2 . (1.103)

Exercise 1.45. Suppose 〈ψ|ψ〉 = 1. Calculate the sum P↑(ψ) +P↓(ψ). {Hint:
write out the 〈ψ|ψ〉 in terms of the components ψ↑ and ψ↓.}

This problem shows that, if we normalize the state |ψ〉 to unity (or one),
which means 〈ψ|ψ〉 = 1, then the probabilities of having a spin–up(down) electron,
P↑(↓) summed together exhaust the possible outcomes for measuring the spin. By
adding up to one we say that, “The spin of the electron is either ‘up’ or ‘down’
100% of the time.” There are no other possibilities.

This constitutes the entire solution to the problem of how to describe the state
of an electron with a general spinor with respect to a given quantization axis.
Here we’ve used the z−axis as the quantization axis. That is why σz is a diagonal
matrix. It corresponds to the spin along the quantization axis. Be careful though.
When we want to ask question about the probability of finding the spin along a
different axis, like say the x−axis, we have to take projections along this axis, not
simply the eigenstates | ↑〉 and | ↓〉.

Exercise 1.46. Consider the state described by the ket |ψ〉 = 1√
2
| ↑〉+ 1√

2
| ↓〉.

What is the probability that this state has spin-up and spin-down, P↑ and P↓?

For future problems we’ll need to use the raising operator, σ+ and lowering
operator, σ−. These are defined as

σ+ =
1

2
(σx + iσy) =

(

0 1
0 0

)

(1.104)

σ− =
1

2
(σx − iσy) =

(

0 0
1 0

)

. (1.105)

Exercise 1.47. Show that σ+| ↑〉 = 0, σ+| ↓〉 = | ↑〉, σ−| ↑〉 = | ↓〉, σ−| ↓〉 = 0

Exercise 1.48. Show that the state |ψ〉 in Prob. 13b is an eigenstate of σx

[Eq.(1.43)]. Do this in two ways: i) Show that |ψ〉 =

(

1√
2

1√
2

)

and use the matrix

form for σx; ii) Solve for the σx in terms of σ± using Eq.(1.104) and Eq.(1.105) and
then calculate σx|ψ〉 using the relations derived in Prob. 13c

Now we turn to the definition of a thing called a matrix element. If we have
a general spinor |ψ〉 and some operator, A then when we act upon |ψ〉 with A from
the left, A|ψ〉 we get some other state (in general), call it |χ〉 = A|ψ〉. Now, suppose
there is a third, general state, |φ〉. We now can take the overlap of |φ〉 with |χ〉.
(Remember that we need to take the Hermitian conjugate of one of them to take
the overlap.) We have

M = 〈φ|χ〉 = 〈φ|A|ψ〉. (1.106)



20 1. GROUP THEORY

Since the matrix element M is the overlap of a bra with a ket it must be a complex
number, M ∈ C. Since M is complex, we can take it’s complex conjugate:

M∗ = 〈φ|A|ψ〉∗ = 〈ψ|A†|φ〉 (1.107)

where now, we have the order changed – φ, which was in the bra is now in the
ket, and vice versa. Also, notice that we have A† instead of A – we have taken the
Hermitian conjugate of the operator A.

We also need to define the concept of the expectation value of an operator.
This is the value that we expect for a given physical quantity if we measure it in a
state described by ψ. For example, for the spin along the z−direction:

〈σ̂z〉 = 〈ψ|σz|ψ〉. (1.108)

This is just a special case of a matrix element where the state in the ket is the same
as the state in the bra.

Exercise 1.49. Prove that the expectation value 〈Ĥ〉 of a Hermitian opera-
tor, H = H† is real. You can do this by showing that the complex conjugate of
the expectation value is equal to the expectation value 〈Ĥ〉∗ = 〈Ĥ〉. To do this,

write out the components of ψ =

(

ψ1

ψ2

)

and then take the complex conjugate and

transpose of the entire expression. (Transpose of a real number does nothing to it.)
Remember that (AB)T = BTAT (prove this) for matrices A and B

Exercise 1.50. Prove that:

〈σ̂z〉 = 〈ψ|σz|ψ〉 = ψ∗
1ψ1 − ψ∗

2ψ2, (1.109)

for a general state ψ.

Now, we’re in a position to rotate the spinors. The elements of SU(2) are the
rotation operators for spinors. And when we apply an element of SU(2) to a general
spinor, ψ we get another spinor, ψ′ which is rotated with respect to the original ψ.
(Compare this to the 2D and 3D cases. They’re exactly analogous.) We have

ψ′ = U(θ)ψ

ψ =

(

ψ1

ψ2

)

ψ′ =

(

ψ′
1

ψ′
2

)

U(θ) = e−iσ·θ/2 = e−iS·θ = cos θ/2 − iσ · θ̂ sin θ/2. (1.110)

Compare the expression for U(θ) above with Eq.(1.56). There is a difference of a
factor of − 1

2 in the angles between them. We need to include this factor in order
to get the rotation properties of the spinors correct.

Exercise 1.51. Show that U(θ) can be written as:

U(θ) =

(

cos θ/2 − iθ̂z sin θ/2 (−iθ̂x − θ̂y) sin θ/2

(−iθ̂x + θ̂y) sin θ/2 cos θ/2 + iθ̂z sin θ/2

)

, (1.111)

where θ = θxx̂ + θyŷ + θz ẑ and θ̂x,y,z = θx,y,z/θ where θ =
√

θ2x + θ2y + θ2z .

Exercise 1.52. Let θ̂x = θ̂z = 0. Then θ = θŷ and θ̂y = 1. Calculate the
matrix U(θ = θŷ)
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Exercise 1.53. Calculate the spinor ψ′ which results by applying this U(θŷ)
to ψ = | ↑〉.

Exercise 1.54. Calculate the probabilities P↑(ψ
′) and P↓(ψ

′) for the rotated
spinor.

Exercise 1.55. Calculate the expectation values 〈σ̂z〉 = 〈ψ′|σz|ψ′〉, 〈σ̂x〉 =
〈ψ′|σx|ψ′〉. and 〈σ̂y〉 = 〈ψ′|σy|ψ′〉. Show that they are equal to 〈σ̂z〉 = cos θ,
〈σ̂x〉 = sin θ and 〈σ̂y〉 = 0.

Exercise 1.56. What angle θ do we need to rotate the spinor ψ = | ↑〉 about
the y–axis (as we have just done in Prob. 16b) so that the new state, |ψ′〉 is the
same state in Prob. 13b?

Exercise 1.57. Explain why this angle θ makes sense physically.

Exercise 1.58. Draw a simple diagram showing the initial spin along the
z−axis, the final spin along its axis, and the rotation axis and angle.

Exercise 1.59. Use the results of Prob. 18 to determine the values of 〈 ˆσx,y,z〉
for this value of θ? Explain why these values make sense by looking at the final
spin of the electron in your simple diagram.





CHAPTER 2

Matrix representation

Before we go on to the problem of an electron in a magnetic field we will
consider the problem of the diagonalization of a matrix for which we often have
the occasion in the course of doing quantum mechanics. Diagonalization yields the
eigenvectors and eigenvalues of Hermitian operators. Although we have already
used some matrix representation of operators (like the Pauli σ matrices) and states

(like the spinor

(

1
0

)

for the | ↑〉 state), this chapter seeks to systematize and

generalize their use. The key notion in this chapter is the expression of a general
Hermitian operator in its matrix representation.

1. Matrix representation of operators

Consider a Hermitian operator Ĥ, Ĥ† = Ĥ. Let’s calculate its matrix elements
with respect to a set of orthonormal states {|a〉}n

a=1 or basis. (The notation
{|a〉}n

a=1 where the label a runs over the integers 1, . . . , n means ‘the set of n kets.’)
The matrix elements are

Hab = 〈a|Ĥ|b〉, (2.1)

where a = 1, . . . , n and b = 1, . . . , n and “orthonormal” means the states satisfy

〈a|b〉 = δab, (2.2)

where δab is the familiar Kronecker δ function, δab = 0, 1 for a = b, a 6= b, respec-
tively. The operator may then be represented by the following matrix

Ĥ =











H11 H12 . . . H1n

H21 H22 . . . H2n

...
...

. . .
...

Hn1 Hn2 . . . Hnn











. (2.3)

There are n2 complex numbers, Hab giving the above form for the rank–n (square)
matrix.

The Hermiticity Ĥ† = Ĥ condition implies

Hba = 〈b|Ĥ|a〉 = 〈a|Ĥ†|b〉∗

= 〈a|Ĥ|b〉∗ = H∗
ab. (2.4)

23
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Now, our objective is to diagonalize this matrix. When we do, we’ll end up
with one that looks like

ĥ =











h1 0 . . . 0
0 h2 . . . 0
...

...
. . .

...
0 0 . . . hn











, (2.5)

with zeros everywhere but along the diagonal. In order to do this we need to find
the eigenvectors and eigenvalues of this matrix. There are n each of them and they
satisfy

Ĥ|α〉 = hα|α〉. (2.6)

The n eigenvectors of Ĥ are {|α〉}n
α=1 and we denote them as |α〉 in contrast with

|a〉. They too are orthonormal. The n real numbers (real since Ĥ is Hermitian) hα

are the eigenvalues of the operator Ĥ, each one corresponding to the particular |α〉
with the same α.

Now we can see what it means to diagonalize a matrix. We are changing the
basis to which we refer when we calculate the matrix elements of the Hermitian
operator. To see this, note that in the “a-basis” we calculate the general matrix
element as in Eq.(2.1). We contrast the evaluation in the a-basis with that in the
α-basis:

Hab = 〈a|Ĥ|b〉 (2.7)

Hαβ = 〈α|Ĥ|β〉
= 〈α|hβ |β〉
= hβ〈α|β〉
= hβδαβ

= hαδαβ , (2.8)

where we used Eq.(2.6) to get from the first line to the second line. And we used
the fact that the |α〉 are orthonormal to get from the third to fourth lines.

So you see that if the off-diagonal components of Ĥ are non-zero, we’re in the
a-basis. If the off-diagonal matrix elements are all zero, then we’re in the α-basis.

The situation that we usually face is: we know the matrix elements in the
a-basis and we want to find the eigenvectors (the |α〉’s) and eigenvalues (the hα’s).

2. Secular equation

Now, you might remember that to diagonalize a matrix you solve the equation
∣

∣

∣Ĥ − hI
∣

∣

∣ = 0 (2.9)

where the vertical bars mean “take the determinant” and I is the identity matrix.
This is called the secular equation. The h here is just a real variable at this
stage, and shouldn’t be confused as the eigenvalues.

This secular equation results from the following considerations. Suppose we
rewrite Eq.(2.6) as

[Ĥ − hα]|α〉 = 0. (2.10)
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We want to convert this operator equation into a matrix equation. That is, we want
to express it in a matrix representation. In order to do this we need to express
everything – Ĥ and |α〉 – as matrices. The basis that we’re going to work in is the
a-basis, of course.

(Actually there are an infinite number of bases that one can work with. But

there’s only one1 basis which diagonalizes Ĥ.)
In order to do this we might think as follows: the ket

|ξ〉 = Ĥ|α〉 (2.11)

which appears on the left-hand-side of Eqs.(2.6),(2.10) and can be expressed in the
a-basis simply by taking the overlap

〈a|ξ〉 = 〈a|Ĥ|α〉 ≡ Haα. (2.12)

But we’ve only done ‘half’ the job. We need both subscripts on Ĥ to be in the
a-basis. If we could manage to squeeze something like |a〉〈a| in between the Ĥ and
the |α〉 we’ll be in business.

Exercise 2.1. Assume that we can write
n
∑

a=1

|a〉ca = 1, (2.13)

here we also assume that |a〉 and ca don’t commute. Using the fact that the a-basis
is orthonormal 〈a|b〉 = δab show that

ca = 〈a| (2.14)

so that

n
∑

a=1

|a〉〈a| = 1. (2.15)

Eq.(2.15) is called completeness and it’s of central importance in the quantum
theory.

We can proceed with with our mission – to express Ĥ and |α〉 as matrices –
using the completeness relation. We write

〈a|ξ〉 = 〈a|Ĥ|α〉
= 〈a|Ĥ · 1 · |α〉

= 〈a|Ĥ ·
n
∑

b=1

|b〉〈b| · |α〉

=

n
∑

b=1

〈a|Ĥ|b〉〈b|α〉

ξa =

n
∑

b=1

Habψb, (2.16)

1We’re assuming that no two of the eigenvalues hα are the same – ie. that the spectrum of

Ĥ in non-degenerate.
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where we have written

ξa = 〈a|ξ〉 (2.17)

ψb = 〈b|α〉 (2.18)

as the components of |ξ〉, |α〉 in the a-basis. You see that by “inserting a complete

set of states”2 at the third line above we have converted Ĥ in the “mixed represen-
tation,” Haα to the matrix representation in the a-basis. And we have gotten, as a
bonus, the matrix representation of |α〉 (it’s an n-by-1 matrix, but still a matrix).

Exercise 2.2. Use completeness of the a-basis to write Eq.(2.10) in its matrix
representation.

Now, using the results of Ex.(2.2) we can obtain the secular equation as follows.
From the result of Ex.(2.2) we have

∑

b

(Hab − hαδab)ψb = 0. (2.19)

Now, suppose we could invert the matrix M = Ĥ −hI on the left-hand-side of this
equation. Then we could write

ψa =
∑

b

M−1
ab · 0 (2.20)

which would mean that all the ψa are zero – not a very interesting solution to
the above equations. Therefore, in order to have non-trivial solutions, M must be
singular, ie. not invertible. This means it’s determinant is zero.

detM =
∣

∣

∣Ĥ − hI
∣

∣

∣ = 0, (2.21)

which is the secular equation.

3. Completeness

Completeness –
n
∑

a=1

|a〉〈a| = 1 (2.22)

– is such an important property of quantum systems that we should take a few
moments to understand its content.

Any state, for example |ζ〉, can be expressed in the matrix representation by
virtue of the completeness relation

|ζ〉 = 1 · |ζ〉
=
∑

a

|a〉〈a| · |ζ〉

=
∑

a

|a〉〈a|ζ〉

=
∑

a

|a〉ζa. (2.23)

(We won’t always write the range over which a runs in the summation symbol
∑

,
but we assume it’s from 1 to n.)

2This has been referred to by, at least, R.V. Reid of UC-Davis as ”The old German trick.”
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Suppose I define an operator

Pa = |a〉〈a|. (2.24)

What is it?

Exercise 2.3. Show that the name for Pa of projection operator makes
sense by acting on |ζ〉 with it.

So we see that the projection operator isolates or projects-out the component
of a general state, like ζ, “along” |a〉. And we also see that if we sum the projection
operators along each state in the a-basis

∑

a

Pa|ζ〉 =
∑

a

|a〉ζa = |ζ〉, (2.25)

so that
∑

a

Pa = 1. (2.26)

Exercise 2.4. Show that the projection operators obey the following relations:

i) PaPb = 0, (a 6= b);
ii) PaPa = Pa.

(Or, compactly, PaPb = δabPa.)

4. Rank–2 example – Two-level system

Let’s see how this all works for a rank–2 matrix. Using the definition Eq.(2.3)
with n = 2 we have

Ĥ =

(

H11 H12

H21 H22

)

hI =

(

h 0
0 h

)

. (2.27)

The secular equation, Eq.(2.9) gives:

∣

∣

∣
Ĥ − hI

∣

∣

∣
=

∣

∣

∣

∣

H11 − h H12

H21 H22 − h

∣

∣

∣

∣

= 0,

h2 − h(H11 +H22) +H11H22 − |H12|2 = 0. (2.28)

So we see that the secular equation is just a second order polynomial in h. It
therefore has 2 real roots. And these roots are the eigenvalues.

Exercise 2.5. Derive Eq.(2.28) and complete the square to solve the quadratic
equation in h for the two roots, h1 and h2.

Exercise 2.6. Write the result of Ex.(2.5) in terms of the trace and determi-

nant of the matrix Ĥ.

Now that we know the eigenvalues, h1, h2 we can find the corresponding eigen-
vectors. The eigenvector equations, Eq.(2.6) are

Ĥ|α1〉 = h1|α1〉 (2.29)

Ĥ|α2〉 = h2|α2〉, (2.30)
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where we have written the states |α〉 with α = 1 and α = 2 in Eq.(2.6) as α1 and
α2 to make clear that we’re referring to the eigenvectors. Either of these equations
can be written in terms of the the basis of {a}2

a=1 ≡ {a1, a2} as
(

H11 H12

H21 H22

)(

ψ1

ψ2

)

= h

(

ψ1

ψ2

)

, (2.31)

which can be written:

H11ψ1 +H12ψ2 = hψ1 (2.32)

H21ψ1 +H22ψ2 = hψ2. (2.33)

Here ψ1 = 〈a1|α〉 and ψ2 = 〈a2|α〉 for α = 1 or α = 2 depending on which eigenstate
we’re talking about.

Exercise 2.7. Show that if we write the solution for either state |α1〉 or |α2〉
as

|α〉 =
1

N





√

H12

h−H11
√

H21

h−H22



 , (2.34)

where N is given by

N =

√

2h− (H11 +H22)

|H12|
, (2.35)

then we obtain the secular equation when we substitute this solution for |ψ〉 into
either of the equations (2.32) or (2.33). (Note that the constant, 1

N drops out when
|α〉 is substituted into Eqs.(2.32),(2.33) so you don’t need to write it out.)

Exercise 2.8. Write down the explicit forms for |α1〉 and |α2〉. Assume that
h1 < h2. (You need to think about what quantity you should replace h with in
Eqs.(2.34) and (2.35)).

Exercise 2.9. Show that the normalization of the above states |ψ〉 is one:

〈ψ|ψ〉 = 1, (2.36)

by using the secular equation which can be written (h−H11)(h−H22) = |H12|2.
Exercise 2.10. Extra Credit: Show that the eigenvectors are orthogonal

〈1|2〉 = 0.

5. Diagonalized spin matrix

Let’s use this machinery to calculate the direction n̂ an electron’s spin points
in if it has the wave function

|ψ〉 = ψ↑| ↑〉 + ψ↓| ↓〉. (2.37)

In the case that n̂ = ẑ we have σ · n̂ = σz and we know that the eigenstates | ↑〉
and | ↓〉 satisfy the eigenvalue equations

σz| ↑〉 = (+1)| ↑〉
σz| ↓〉 = (−1)| ↓〉 (2.38)

The generalization of this equation to an arbitrary direction n̂ is

σ · n̂|ψ〉 = s|ψ〉 (2.39)
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where s = ±1 is the eigenvalue of spin operator σ · n̂ along a direction n̂.
We can write the direction unit vector n̂ in terms of its components

n̂ = (nx, ny, nz) (2.40)

n̂ · n̂ = n2
x + n2

y + n2
z = 1. (2.41)

Exercise 2.11. Write the operator σ · n̂ as a rank–2 matrix in terms of
nx, ny, nz.

Exercise 2.12. Write Eq.(2.39) in terms of components, multiplying the ma-
trix σ · n̂ into the spinor |ψ〉.

Exercise 2.13. Find the roots of the secular equation

|σ · n̂ − sI| = 0. (2.42)

Exercise 2.14. Write the components of the vector n̂ in terms of the polar
angle θ and the azimuthal angle φ (measured from the x–axis) as in Fig.(2).

Exercise 2.15. Show that the eigenvectors

|α1〉 =

(

cos θ
2e

−iφ/2

sin θ
2e

+iφ/2

)

(2.43)

|α2〉 =

(

− sin θ
2e

−iφ/2

cos θ
2e

+iφ/2

)

(2.44)

satisfy Eq.(2.39). (You will find useful the half-angle formulas sin θ = 2 sin θ/2 cos θ/2,
2 cos2 θ/2 = 1 + cos θ, and 2 sin2 θ/2 = 1 − cos θ.)

Exercise 2.16. Using Eqs.(2.43),(2.44) show that the eigenvectors |α1〉 and
|α2〉 are orthogonal, ie. 〈α1|α2〉 = 0 and that they are normalized to one.

Exercise 2.17. Show that the state you obtained by rotating | ↑〉 in Ex.(1.53)
is the same state that you get when you set φ = 0 in the result of Ex.(2.14).





CHAPTER 3

Spin–1
2 particle in a magnetic field

1. Introduction

Now we turn to the problem of finding the ‘motion’ of a single electron (by
‘electron’ we still mean any spin–1

2 particle) in a constant magnetic field.
In general, the magnetic field is described by a vector in ordinary three dimen-

sional Euclidean space, R
3. It’s written as B and it can, in general depend on the

position, r:

B(r) = (Bx(r), By(r), Bz(r)) (3.1)

= Bx(r)x̂ +By(r)ŷ +Bz(r)ẑ. (3.2)

Note that, in general, each component depends on the position. For this section
we’ll take the magnetic field to be

B(r) = (0, 0, B), (3.3)

with B > 0 and independent of position.
Aside: If a charged particle (charge Q) without spin enters a region of space

with a non-zero magnetic field, it experiences a force given by

F = Qv × B, (3.4)

which is perpendicular to both its velocity v and B. We aren’t considering this
kind of force in what follows. The force we are talking about is independent of
the velocity (it is experienced even by particles at rest for which F = 0) and only
affects particles with intrinsic angular momentum, ie. spin.

By virtue of the fact that the electron has spin, it has what’s called a magnetic
moment which means that it acts like a tiny ‘bar magnet.’ Its energy therefore
depends on the orientation of the spin with respect to the magnetic field. This
energy is given by

Ĥspin = −µ · B (3.5)

where µ is the magnetic moment. The magnetic moment is given in terms of the
Pauli spin matrices

µ =
e

2m
S =

e

2m

σ

2
, (3.6)

S =
σ

2
, (3.7)

where e is the magnitude of the electron charge, e = 1.6 × 10−19 C, where C
means ‘Coulombs’ and m is the electron’s mass which we usually write as an energy
m = 0.511 MeV. (Special relativity shows that mass and energy are equivalent.)
Here we see that the magnetic moment µ is proportional to the electron spin S
which is half of the Pauli spin matrices.

31
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Now, forget for a moment that the electron is a quantum object whose spin is
described by the matrices σ and just pretend that it’s an ordinary vector

µ = (µx, µy, µz), (3.8)

and assume that the magnetic field is given by Eq.(3.3). Then the energy is

Hspin = −µB cos θ (3.9)

where µ = |µ| and θ is the angle between the B field and µ (θ is the polar angle).
When the spin is aligned (anti-aligned) with the magnetic field θ = 0(π/2) and

the energy is

Hspin =

{

−µB θ = 0
+µB θ = π/2

(3.10)

so, clearly, the configuration where the spin is aligned is favored since it has lower
energy.

Exercise 3.1. Plot Hspin as a function of θ.

Exercise 3.2. Differentiate Hspin with respect to θ.

Exercise 3.3. Calculate the torque, τ = µ × B (× means the vector or
cross product) using the B field given in Eq.(3.3). How is related to the result of
Ex.(3.2)? This is a general result: The derivative of the energy with respect to a
coordinate gives a generalized force (like a torque).

Let’s return to the quantum theory now. The magnetic moment µ is not
described by a classical three vector – it’s described by the Pauli spin matrices. So,
for the B field of Eq.(3.3) we get:

Ĥspin = − eB

2m
σz = − eB

2m

(

1 0
0 −1

)

. (3.11)

The ‘motions’ of a quantum system are described by the time dependent Schrö-
dinger equation (TDSE). It is a differential equation that relates the Hamilton-
ian (or energy), Eq.(3.5) to a time derivative of the wave function |ψ〉:

i
∂

∂t
|ψ(t)〉 = Ĥspin|ψ(t)〉. (3.12)

In the present case of the electron in the magnetic field, the wave function is a
constant (in ordinary three dimensional R

3 space) spinor which depends on time:

|ψ(t)〉 =

(

ψ1(t)
ψ2(t)

)

. (3.13)

The TDSE [Eq.(3.12)] in words says that if we act with the Hamiltonian, here Ĥspin

then we get the (partial) time derivative of the wave function (up to the constant
factor i). This is a general feature of equations-of-motion (EOM). They relate
time derivatives of dynamical variables (here, |ψ(t)〉 is the dynamical variable) to
functions of the dynamical variables. Think of Newton’s second law:

F = ma (3.14)

a =
d2r(t)

dt2
(3.15)

d2r(t)

dt2
=

1

m
F, (3.16)
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where m is the mass of the particle and F is the force acting on it. The last line
shows that Newton’s second law is an EOM – it relates, in this case, the second
time derivative of the position of a particle – which is now the dynamical variable
– to a function, which is a vector, F.

2. Separation of variables

Returning to the TDSE – our first step is to solve for the time dependence of
the wave function by the general method of solution of partial differential called
separation of variables. We write the wave function as a product

|ψ(t)〉 = T (t)|ψ(0)〉 (3.17)

|ψ〉 ≡ |ψ(0)〉, (3.18)

where T (t) is a function of the time only. If we substitute this form into the SE we
can write

Ĥspin|ψ〉 =

[

i
1

T (t)
T ′(t)

]

|ψ〉, (3.19)

where T ′(t) = dT (t)
dt . Now, for a time-independent magnetic field B the Ĥspin is

independent of the time. That means that only the factor in the square brackets
[· · · ] can depend on time. But since the left-hand-side (lhs) is independent of time
in Eq.(3.19) then so must be the right-hand-side (rhs). So the factor in brackets is
a constant:

[

i
1

T (t)
T ′(t)

]

= E (3.20)

which we have arbitrarily (wink, wink) chosen to call E.
The solution to the equation

T ′(t) = −iET (t) (3.21)

is obvious if you know a little calculus. But it’s also possible to explicitly derive the
solution and the method by which we do this is frequently encountered in quantum
mechanics and its generalization, quantum field theory, so I’ll give an explanation
of this iterative solution here.

3. Iterative solution

Integrate Eq.(3.21) with respect to t′ from some initial time ti to some final
time t

T (t) = T (ti) − iE

∫ t

ti

dt′T (t′). (3.22)

We’ve converted the differential equation to an integral equation. This is generally
not thought of as a simplification because integral equations are more difficult to
solve than differential ones. The rhs depends on the the function T (t) that we’re
trying to find on the lhs. It looks like this is a nightmare.

Let’s try something even more ridiculous looking – let’s substitute the expres-
sion for T (t′) on the lhs into the rhs:

T (t) = T (ti) − iE

∫ t

ti

dt′

[

T (ti) − iE

∫ t′

ti

dt′′T (t′′)

]

. (3.23)
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Note that in the factor in [· · · ], the upper limit of integration is now t′, not t, and
that we have changed the integration variable (a ‘dummy’ variable) to t′′ for this
factor in order to consistently keep track of the two separate integrations over dt′

and dt′′. Moving things around, we can rewrite this as:

T (t) = T (ti) − iE(t− ti)T (ti) + (−iE)2
∫ t

ti

dt′
∫ t′

ti

dt′′T (t′′). (3.24)

Now we see the utility in this iterative solution – we have obtained the second term
−iE(t− ti)T (ti) which is ‘of order O(t− ti)’, ie. it depends linearly on time. The
next term we will get by substituting Eq.(3.22) into Eq.(3.24) will be second order,
O(t− ti)

2, ie. quadratic in time.

Exercise 3.4. Prove Eq.(3.24).

Exercise 3.5. Show that the second order term is:

T (ti)
(−iE)2

2
(t− ti)

2. (3.25)

Carrying out the iterative procedure to all orders in (t− ti) we obtain

T (t) = T (ti)

∞
∑

n=0

[−iE(t− ti)]
n

n!
(3.26)

= T (ti)e
−iE(t−ti). (3.27)

Exercise 3.6. Show that T (ti = 0) = 1.

Finally, we have arrived at the solution to the TDSE (setting ti = 0)

Ĥspin|ψ(t)〉 = i
∂

∂t
|ψ(t)〉 (3.28)

|ψ(t)〉 = e−iEt|ψ〉 (3.29)

Ĥspin|ψ〉 = E|ψ〉 (3.30)

where the last equation is the time independent Scrhödinger equation (TISE), which
we will now solve. (Actually, we’ve already solved it – the solutions are given by
the kets |1〉 and |2〉 for a B field in a general direction, n̂.)

4. Time independent Schrödinger equation

Let’s begin by assuming that the B field is given by Eq.(3.3). Then the Hamil-
tonian is

Ĥspin = −µ · B, (3.31)

= − eB

2m
Sz, (3.32)

Sz =
σz

2
, (3.33)
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and the TISE is

− eB

2m

σz

2
|ψ〉 = E|ψ〉 (3.34)

(

1 0
0 −1

)(

ψ1

ψ2

)

= − E

ωL/2

(

ψ1

ψ2

)

(3.35)

ωL =
eB

2m
(3.36)

where ωL is the Larmour frequency.

Exercise 3.7. Prove that the units of ωL are s−1, a frequency. Use the units
[m] =MeV, [eB] =MeV2. “MeV” means “mega electron-volts” and it’s the standard
unit of mass or energy in nuclear physics. You’ll have to put in a factor of ~ (which
has units [~] =MeV s) which we have set to one.

We want to solve Eq.(3.35). Look at it – it looks just like Eq.(2.39) with n̂ =
(0, 0, 1). Then we’ve already solved it! The eigenvalues are ±1 and the eigenvectors
are given in Eqs.(2.38).

Exercise 3.8. What are the eigenvalues of Eq.(3.35) as a function of ωL?

Exercise 3.9. What are the eigenvectors?

If we write the eigenvectors as |ψ1〉 and |ψ2〉 and their corresponding eigenvalues
E1 and E2 with E1 < E2 and form the linear superposition

|ψ(t)〉 = c1e
−iE1t|ψ1〉 + c2e

−iE2t|ψ2〉, (3.37)

then this |ψ(t)〉 is a solution of the TDSE, Eq.(3.28). Here, c1 and c2 are general
complex numbers.

Exercise 3.10. Prove this.

We now have determined the form for the general solution of the quantum
EOM for a single spin in a constant magnetic field. What does the motion of the
spin look like? In order to answer this question – as with any question regarding
an experimentally determinable observable in quantum mechanics – we need to
calculate the expectation values of some operator in some state.

Exercise 3.11. Calculate the expectation values of all three Pauli matrices,
〈σ̂i〉 = 〈ψ(t)|σi|ψ(t)〉, i = x, y, z. Express your answer so that the fact that ex-

pectation values are real is explicitly demonstrated. Recall that ℜz = z+z∗

2 and

ℑz = z−z∗

2i .

Solution:

〈σ̂x〉 = 2ℜ(c∗1c2) cosωLt+ 2ℑ(c∗1c2) sinωLt (3.38)

〈σ̂y〉 = −2ℜ(c∗1c2) sinωLt+ 2ℑ(c∗1c2) cosωLt (3.39)

〈σ̂z〉 = |c1|2 − |c2|2 . (3.40)

These results demonstrate that the electron’s spin precesses about the z–axis
with frequency ωL.

This is the principle at work in nuclear magnetic resonance (NMR) imaging.
A sample, like a person’s head, is subject to a magnetic field which sets all of the
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nuclei which have non-zero spins to precessing. Then the sample is shot with a radio
frequency (tens of megahertz) electromagnetic pulse. If the frequency of the pulse
is resonant with (close to) some of the nuclear spin precession frequencies (which
depend on the charge and mass of the nucleus) then the electromagnetic pulse
will cause transitions of spins which are aligned with the magnetic field and while
spins which are anti-aligned decay due to quantum and statistical fluctuations. By
measuring the energy imparted to the spins and the energy emitted it is possible
to obtain full three-dimensional imaging.



CHAPTER 4

Many-body quantum mechanics

So far, we have been talking about the quantum description and dynamics of
a single particle (actually, just about its spin – at some point in the future you’ll
learn about the motion of particles in three dimensional configuration space). Now,
we turn to the quantum description of two or more particles – many-body quantum
mechanics.

For the purposes of this project, when we write down the wave function for two
or three particles, we will ignore interactions between them – we treat the particles
as free or non-interacting. We will study the interactions between the particles at a
later stage, but we will ignore the effect of these interactions on the wave functions
themselves.1

1. Two spin- 1
2 particles

Suppose we have an electron (or a quark), call it electron “1” in a state described
by the state |ψ1〉 and another electron, call it “2” described by the state |χ2〉.2 The
subscripts denote which particle and the ψ =↑, ↓ and χ =↑, ↓ denote the state the
particle is in. There are four possible states that the two particles can be in and
they’re described by |s1s2〉:

| ↓1↓2〉, | ↓1↑2〉, | ↑1↓2〉, | ↑1↑2〉, (4.1)

for the possible values of s1 =↓1, ↑1 and s2 =↓2, ↑2. We’ll call this basis the s-
basis.3 For now, it doesn’t matter which order we write the s1 and s2 in – that is,
|s1s2〉 = |s2s1〉.

Exercise 4.1. Prove that we need 2N states to describe the spin state of N
electrons.

Exercise 4.2. Write down the states of three particles in the s-basis. Write
them down in the following order: the first state has all spins ↓; for the rest of the
states the rightmost spin flips back and forth each time; the second rightmost state
flips every other time, etc. Look at the order in which I wrote down the states in
Eq.(4.1) for guidance.

1You might ask yourself how we can get away with such a gross simplification, especially
since QCD is the theory of strong interactions, and still say anything useful about the observed

hadron data. For now, suffice it to say that we can learn some basic features of QCD within this
simple-minded picture, but that we shouldn’t content ourselves beyond the realization that this
approach is anything other than a first step into a complex and beautiful but vast and challenging

terrain.
2These states, |ψ1〉 and |χ2〉 are just spinors.
3There are other bases we can use, as we’ll see below.

37
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Suppose we subject these electrons to a constant magnetic field like we did in
the last section. Since these electrons aren’t interacting the total energy of the two
of them together is just

E = E1 + E2, (4.2)

which means that the Hamiltonian operator Ĥspin is just the sum of the one-particle
(or one-body) Hamiltonians

Ĥspin = Ĥspin,1 + Ĥspin,2 (4.3)

= − e

2m
(σ1 ⊗ 112 + 111 ⊗ σ2) · B, (4.4)

where σ1,2 are the Pauli spin matrices for particles 1 and 2, respectively, ⊗ means
direct product, and 111,2 are the rank-2 unit matrices for particles 1 and 2, re-
spectively.

What are those ⊗’s and 11’s doing here? Suppose we’re talking about a system
with N electrons in it and all N electrons are described by |Ψ〉. The state |Ψ〉
depends on the spins of all the electrons. Then anytime we act on this state
with an operator, O – any operator – this operator must act on the spins (more
generically, the coordinates) of all N electrons – in more normal words, O must
have ‘instructions’ for what do to each and every particle. So the term in Eq.(4.3)
that’s proportional to σ1 ⊗ 112 means: “evaluate the spin of particle 1 and leave the
spin of particle 2 alone.”

So all operators, O are N -body operators, but we generally refer to operators
in many-body systems by the number of particles that are affected by the operator.
Then σ1 ⊗ 112 is a ‘one-body’ operator and something like σ1 · σ2 is a ‘two-body’
operator because it acts on the spins (coordinates) of both particle 1 and 2.

The symbol ⊗ means that the operators on either side act on different parti-
cles.4 We will not usually write down the unit operators (matrices) 11 but they are
understood to be there. Then we have

Ĥspin = − e

2m
(σ1 + σ2) · B. (4.5)

Notice something about this Hamiltonian – if we interchange the labels 1 and 2
on the σ’s, we get back the same operator. This is an axiom of quantum mechanics:
all particles of a given species are identical. Electrons are indistinguishable. Protons
are indistinguishable. Etc.5 This means that the Hamiltonian must be the same no
matter which way we label the particles. Another way of saying this is that “the
Hamiltonian is completely symmetric under permutations of the particle labels
(or indices).” This is called the ‘principle of indistinguishability of particles’ (PIP).

2. Principle of indistinguishability of particles (PIP)

Suppose we wish to describe a state where one of the particles is ↑ and the other
is ↓. Which state should we use to describe it? Should it be | ↑1↓2〉 or | ↓1↑2〉?
Seems like we have some trouble here.

4These particles are in different Hilbert spaces, H1 and H2 and the full Hilbert space is the

direct product space H = H1 ⊗H2.
5This is not so classically – given a labeling of the N classical electrons we can follow the

trajectory of each in time and keep track of them forever. In quantum mechanics, we can’t do
this – as we’ll see below. Also, this axiom can’t be proven – other than experimentally, and there

are plenty of experiments which verify it.
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Exercise 4.3. Use the PIP to resolve this apparent ambiguity.

Resolving this ambiguity requires that we use both states | ↑1↓2〉 or | ↓1↑2〉. But
how? The PIP not only constrains the form of the Hamiltonian, it also constrains
the form of wave functions used to describe the system. Consider an operator P12

which acts on states to change the labels of the particles. That is:

P12| ↓1↓2〉 = | ↓2↓1〉 = | ↓1↓2〉 (4.6)

P12| ↓1↑2〉 = | ↓2↑1〉 = | ↑1↓2〉 (4.7)

P12| ↑1↓2〉 = | ↑2↓1〉 = | ↓1↑2〉 (4.8)

P12| ↑1↑2〉 = | ↑2↑1〉 = | ↑1↑2〉. (4.9)

Before getting to the constraint that PIP places on the wave functions, let’s have
a look at these relations. We notice that if we write the spin of particle 1 first and
then the spin of particle 2 second, we can drop the subscripts 1 and 2 on the ↑’s
and ↓’s as long as we remember that the first position always means particle 1 and
the second particle 2. NB: The order that we write the spins in the ket
now matters. | ↑↓〉 6= | ↓↑〉. In this notation, the above relations become:

P12| ↓↓〉 = | ↓↓〉 (4.10)

P12| ↓↑〉 = | ↑↓〉 (4.11)

P12| ↑↓〉 = | ↓↑〉 (4.12)

P12| ↑↑〉 = | ↑↑〉. (4.13)

Now, the PIP says that no matter how we label the particles, we must get the
same physical description of the system. Then, if the state of the two electrons is
described by |Ψ〉, it doesn’t matter if we come along and act on |Ψ〉 with P12, we
should get a physically equivalent state, |Ψ′〉. Physically equivalent means that |Ψ′〉
differs from |Ψ〉 only by a phase factor, eiα:

|Ψ′〉 = P12|Ψ〉 = eiα|Ψ〉, (4.14)

where α ∈ R.

Exercise 4.4. Prove that states that differ only by a phase factor give rise to
the same physically observable quantities. Recall that observables are calculated
by taking the expectation value of Hermitian operators (though Hermiticity isn’t
required to solve this exercise).

Exercise 4.5. Prove P12P12 = 1.

Exercise 4.6. Prove that either α = 0 or α = π.

3. Total spin or S–basis

As a consequence of the result in Prob. 50, we see that when we act on |Ψ〉
with P12 we must get

P12|Ψ〉 = ±|Ψ〉, (4.15)

so here we have the answer to the question posed earlier. If P12| ↑↓〉 = | ↓↑〉 and
P12| ↓↑〉 = | ↑↓〉 then if we write (we’ll describe why we label these states this way
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in a moment)

|S0〉 =
1√
2

(| ↑↓〉 − | ↓↑〉) (4.16)

|S(+1)
1 〉 =

1√
2

(| ↑↓〉 + | ↓↑〉) , (4.17)

we get

P12|S0〉 = −|S0〉 (4.18)

P12|S(0)
1 〉 = |S(0)

1 〉 (4.19)

and these states on the right are physically indistinguishable from the ones on the
left before application of P12. The state in Eq.(4.17) is antisymmetric while the
one in Eq.(4.20) is symmetric. The other states

|S(+1)
1 〉 = | ↑↑〉 (4.20)

|S(−1)
1 〉 = | ↓↓〉, (4.21)

are already symmetric. This collection of four states, |S0〉, |S(−1)
1 〉, |S(0)

1 〉, |S(+1)
1 〉 is

called the S-basis.
We’ll now set out to show through the following exercises that the states of the

S–basis, as the reader may have surmised, are the states of the total spin of the
two particles.

Exercise 4.7. Prove that the states |S(−1)
1 〉, |S(0)

1 〉, |S(+1)
1 〉 are eigenstates of

P12. What is their eigenvalue?

Exercise 4.8. Prove that the state |S0〉 is an eigenstate of P12. What is its
eigenvalue?

Exercise 4.9. Calculate the normalization of all four states 〈S(M)
S |S(M)

S 〉 using
〈s′1s′2|s1s2〉 = 〈s′1|s1〉〈s′2|s2〉.

What is the physical meaning of the states in the S-basis? We rewrite the
Hamiltonian, Eq.(4.3) as

Ĥspin = − e

m
S · B (4.22)

S =
1

2
(σ1 + σ2), (4.23)

where S = S1 + S2 is the total (vector) spin of the two electrons.

Exercise 4.10. Show: S · S = S2 = 3
2 + 2S1 · S2.

Next we define the raising and lowering operators:

S1,± = σ1,± =
1

2
(σ1,x ± iσ1,y) = S1,x ± iS1,y (4.24)

S2,± = σ2,± =
1

2
(σ2,x ± iσ2,y) = S2,x ± iS2,y (4.25)

S± = S1,± + S2,±. (4.26)

Exercise 4.11. Prove: S1 · S2 = 1
2 (S1,+S2,− + S1,−S2,+) + S1,zS2,z.
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Exercise 4.12. Show that:

S1 · S2|S0〉 = −3

4
|S0〉 (4.27)

S1 · S2|S(−1)
1 〉 =

1

4
|S(−1)

1 〉 (4.28)

S1 · S2|S(0)
1 〉 =

1

4
|S(0)

1 〉 (4.29)

S1 · S2|S(+1)
1 〉 =

1

4
|S(+1)

1 〉. (4.30)

Exercise 4.13. Show that:

S2|S0〉 = 0 (4.31)

S2|S(−1)
1 〉 = 2|S(−1)

1 〉 (4.32)

S2|S(0)
1 〉 = 2|S(0)

1 〉 (4.33)

S2|S(+1)
1 〉 = 2|S(+1)

1 〉. (4.34)

So we have proven that

S2|S(M)
S 〉 = S(S + 1)|S(M)

S 〉 (4.35)

where, in the eigenvalue S(S+1), S is the subscript in |S(M)
S 〉 and takes the values

S = 0, 1.

Exercise 4.14. What operator is M in |S(M)
S 〉 the eigenvalue for?

Exercise 4.15. Calculate the eigenvalues of Ĥspin for B = (0, 0, B) for the
states in the S-basis.
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4. Addition of angular momentum

What we have been doing in the last few pages is figuring out, in a ground-up
sort of way, how to add the angular momentum of two spin-1

2 particles in quantum
mechanics. Contrast this with the situation in classical mechanics. There, we take
the relevant angular momentum three-vectors and just sum them up, component
by component (like we would with any three vector).

In the quantum theory, we sum up the operators of the relevant angular mo-
menta just as we do in classical mechanics. The states are, however, a bit more
involved since we can talk about, for example, each particles’ individual angular
momentum (the s–basis) or their total (the S–basis). Connecting these two angular
momentum bases is, again, what we have been about these last few pages. We
found that in order to find the eigenstates of the total spin in the S–basis of a pair
of electrons we had to take appropriate linear combinations of the states in the
s–basis. We will write them in a renamed form for consistency with the general
notation. We take the states of a pair of particles in the s–basis as |s1s2;m1m2〉
where s1 = s2 = 1

2 and m1 and m2 can be either ± 1
2 . While those in the S–basis

are written as |s1s2;SM〉, where again s1 = s2 = 1
2 and S = 0, 1 and M = −1, 0, 1

as we learned in the first part of this section. Sometimes when there’s no chance
for confusion, we’ll write |s1s2;SM〉 = |SM〉. In this notation, the state of the
S–basis are given in terms of the states in the s–basis as

|0, 0〉 =
1√
2

(

| 12 1
2 ; + 1

2 − 1
2 〉 − |12 1

2 ;− 1
2 + 1

2 〉
)

(4.36)

|1,+1〉 = |12 1
2 ; + 1

2 + 1
2 〉 (4.37)

|1, 0〉 =
1√
2

(

| 12 1
2 ; + 1

2 − 1
2 〉 + | 12 1

2 ;− 1
2 + 1

2 〉
)

(4.38)

|1,−1〉 = | 12 1
2 ;− 1

2 − 1
2 〉. (4.39)

Recall that there are four states in the s–basis and the four states in the S–basis.

Exercise 4.16. Why?

So we can alternatively write the states in the s–basis in terms of those in the
S–basis.

Exercise 4.17. Do this. Use the shorthand notation |m1m2〉 for states in the
s–basis and |SM〉 for states in the S–basis.

The coefficients in front of the various kets come up all the time and so they
get a special name – angular momentum coupling coefficients – also known by

the name Clebsch-Gordon coefficients, after the 19th C. German mathematicians
who developed them. Now, consider Fig.(1): it’s a table of Clebsch-Gordon (CG)
coefficients. In the upper left corner, the 1/2 × 1/2 indicates that the table is
used for coupling s1 = 1

2 to s2 = 1
2 . The body of the table consists of three

sectors, delineated by thick lines – corresponding to the number (either in s–basis
or S–basis) of distinct values of Sz = s1,z + s2,z.

Exercise 4.18. By looking at Fig.(1) determine the number of distinct values
of Sz are there as a function of S realizing that S can take on two values: S = 0, 1.

Along the left-hand-side (lhs) of the body of the table, in each sector, are the
values of m1 and m2 – the values of the individual spins of the electrons. For
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+1 1

0

1/2
1/2

−1/2

0

0

1/2

−1/2

1

1

−1−1/2

1

1

−1/2
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Notation: M M
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. . .

.
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.
.

m1 m2

m1 m2 Coefficients

Figure 1. Angular momentum coupling (Clebsch-Gordon) coefficients.

example, in the first sector the lhs of the table has: +1/2 +1/2 ↔ | ↑↑〉 ↔ m1 =
+ 1

2 ,m2 = + 1
2 , and so on. Along the top side of the body of the table are the values

of S (upper) and M (lower). The first sector has: 1

+1 ↔ |1,+1〉 ↔ S = 1,M = +1,
and so on.

Now that we understand the layout of the table we turn to the meaning of the
coefficients themselves. The first thing you need to know is that each entry in the
table should be understood to have a square root symbol – in the right place. You
should read it as:

1

2
→ +

1√
2

−1

2
→ − 1√

2
. (4.40)

In other words, the CG coefficients are always chosen6 to be real. To be clear: we
don’t take the square root of a negative entry in the table, we take minus the square
root of the absolute value of the entry if it’s negative.

Exercise 4.19. Suppose an entry of the table is − 2
5 . What is the CG coeff?

Now, you might already have figured out what’s happening here. Suppose you
want the states |1, 0〉 in the S–basis. Then you go to the M = 0 sector (the large
one in the middle of the table) and read down in the column marked 0

0
. You come

across a 1/2 in the row labeled +1/2 -1/2 and a −1/2 in the row labeled -1/2

+1/2 finding, therefore that:

|0, 0〉 =
1√
2
| + 1

2 − 1
2 〉 −

1√
2
| − 1

2 + 1
2 〉. (4.41)

One important feature of this table, related to the fact that the transforma-
tion from the s–basis to the S–basis (which is what you’re doing when you write
the states |SM〉 in terms of the states |s1s2;m1m2〉) is unitary – we know what
unitary means from before.

Exercise 4.20. If a matrix U is unitary, what condition does it satisfy?

6By appropriate selection of phase factors.
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Exercise 4.21. Form the matrix U whose elements are the CG coefficients
(rows label s–basis, columns label S–basis). Prove that this matrix is unitary.

Exercise 4.22. Show that the sum of the squares of the rows of the CG table
are each equal to 1.

Exercise 4.23. Show that the sum of the squares of the columns of the CG
table are each equal to 1.

So the table of CG coefficients encodes all the information about the unitary
transformation from the s–basis to the S–basis. In general, if we have an orthonor-
mal basis, like the s–basis, and we do a unitary transformation on it we get another
orthonormal basis, like the S–basis.

Exercise 4.24. Prove that the s– and S–bases are orthormal. (Recall that a
basis is orthonormal if 〈α|α′〉 = δα,α′ , where α and α′ label each state in the basis
distinctly.)

Exercise 4.25. From the Clebsch-Gordon table derive the expressions for the
states |s1s2;m1m2〉 in terms of |SM〉. Show that they are equivalent to the results
for the expressions you got in Prob.(4.17)

4.1. Formal relations for two spin- 1
2 particles. Now that we understand

how these relations all work in detail, let’s take a step back and write this informa-
tion in a more formal, compact notation.

The states in the S–basis are linearly independent combinations of the states
in the s–basis. This can be formally written as:

|s1s2;SM〉 =

+ 1
2

∑

m1=− 1
2

+ 1
2

∑

m2=− 1
2

|s1s2;m1m2〉〈s1s2;m1m2|s1s2;SM〉. (4.42)

On the lhs, we have the states, |s1s2;SM〉, on the rhs we have a double sum over
the states in the |s1s2;m1m2〉 times some quantities 〈s1s2;m1m2|s1s2;SM〉 – which
are just the CG coefficients from the table. The factor 〈s1s2;m1m2|s1s2;SM〉 on
the rhs is just an overlap of the states in the s–basis with those in the S–basis. So
we could equally well write

|s1s2;SM〉 =





+ 1
2

∑

m1=− 1
2

+ 1
2

∑

m2=− 1
2

|s1s2;m1m2〉〈s1s2;m1m2|



 |s1s2;SM〉, (4.43)

which proves that

+ 1
2

∑

m1=− 1
2

+ 1
2

∑

m2=− 1
2

|s1s2;m1m2〉〈s1s2;m1m2| = 11. (4.44)

Be careful to note that the labels s1 and s2 just tell you that you’re coupling spin-1
2

to spin- 1
2 and they are not summed over. Only the m1 and m2 are summed over

in these expressions. Also note that the sums over m1 and m2 only have non-zero
contributions when M = m1 +m2 – this happens for the same reason that the only
states appearing on the rhs of Eqs.(4.36) in the s–basis have m1 +m2 = M on the
lhs. So, for example, the coefficient 〈 1

2
1
2 ;m1 = + 1

2 ,m2 = + 1
2 | 12 1

2 ;S = 1,M = 0〉 =
0. You get an equivalent set of relations if you take the restrict the sums over
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m1 and m2 subject to m1 + m2 = M . Eq.(4.44) is known as the completeness
relation. 7

Exercise 4.26. Calculate the quantities 〈s1s2;m1m2|s1s2;SM〉 ≡ 〈m1m2|SM〉
for all m1, m2 and M which give a non-zero result by taking overlaps of states in
the s–basis (as bras) with states in the S–basis (as kets).

The notation in Eq.(4.44) is very compact. It says that if you sum over the
direct products of kets and bras given in the expression you obtain the unit matrix.

Exercise 4.27. What is the rank of the unit matrix in Eq.(4.44)?

There is, of course, a similar relation for the states of a single spin:

+ 1
2

∑

m=− 1
2

|sm〉〈sm| = |12 + 1
2 〉〈 1

2 + 1
2 | + | 12 − 1

2 〉〈 1
2 − 1

2 |

= 112×2, (4.45)

but note that now, the unit matrix, 11 is 2 × 2 or rank–2.

Exercise 4.28. By writing the states | ↑〉 and | ↓〉 as column vectors and the
states 〈↑ | and 〈↓ | as a row vectors, show that Eq.(4.45) is satisfied. The direct

product of a column vector u =

(

u1

u2

)

and a row vector v = (v1, v2) results in a

matrix, M whose elements are given by Mij = ui × vj .

NB: Don’t forget that 〈ψ| means transpose and complex conjugate of |ψ〉 – but
that this isn’t important in the above Exercises since all the components are real.

The relations that you derived in Exs.(4.22) & (4.23) also have formal relations.
These are derived by considering the orthonormality of the states in the S–basis:

〈s1s2;SM ′|s1s2;SM〉 = δM ′,M . (4.46)

Next, we use the completeness relation Eq.(4.44) (or ‘insert a complete set of s–basis
states) as:

〈s1s2;SM ′|s1s2;SM〉 = 〈s1s2;SM ′|112×2|s1s2;SM〉 = δM ′,M

(4.47)

= 〈s1s2;SM ′|





+ 1
2

∑

m1=− 1
2

+ 1
2

∑

m2=− 1
2

|s1s2;m1m2〉〈s1s2;m1m2|



 |s1s2;SM〉 = δM ′,M ,

(4.48)

=

+ 1
2

∑

m1=− 1
2

+ 1
2

∑

m2=− 1
2

〈s1s2;SM ′|s1s2;m1m2〉〈s1s2;m1m2|s1s2;SM〉 = δM ′,M ,

(4.49)

which becomes, for M ′ = M

+ 1
2

∑

m1=− 1
2

+ 1
2

∑

m2=− 1
2

|〈s1s2;SM |s1s2;m1m2〉|2 = 1, (4.50)

7Another example of the ‘Old German Trick.’
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since δM,M = 1 and 〈s1s2;SM |s1s2;m1m2〉∗ = 〈s1s2;m1m2|s1s2;SM〉.

Exercise 4.29. Prove this equation for M = 0, S = 0, 1 using the CG table.

This pretty much exhausts the topic of the addition of angular momentum for
two spin- 1

2 particles. Our project requires the wave functions of three quarks – ie.

three spin- 1
2 particles. So we need to generalize the above relations to be able to

take the addition of the third particle – electron or quark (or any spin-1
2 particle)

– into account. We’ll do this in the next section.
Let’s review. We began by considering two spin-1

2 particles and “coupling”
(“adding”) their spins together. This yielded the singlet with total spin S = 0 and
the triplet with total spin S = 1. In shorthand notation:

1

2
⊗ 1

2
= 0 ⊕ 1 (4.51)

or

2 ⊗ 2 = 1 ⊕ 3 (4.52)

where in the first equation we have written the coupling in terms of the total spin
and the second we have written the coupling in terms of the dimensionality of the
bases, 2 on the lhs for the s–basis and 1 for the singlet and 3 on the rhs for the
S–basis. Eq.(4.51) is non-arithmetic – treating the spins as real numbers and using
⊗ and ⊕ as ordinary multiplication and addition doesn’t yield a correct equation.
But the second equation, Eq.(4.52) does. (“Two times two equals 1 plus 3.”) And
this is a good way to check your calculations. 8

Note further that the bold numbers in Eq.(4.52) are simply 2×(# in Eq.(4.51))+
1. For example, for S = 1

2 there are 2S + 1 = 2 states with different values of M .
In this way, you can check that after you couple together two angular momenta,
say j1 and j2 you get the right number of states of total angular momentum.

Let’s see how this works by generalizing our results for the coupling of two
spin- 1

2 particles to the coupling of two arbitrary angular momenta. By arbitrary
we mean either angular momentum j1 and/or j2 can be integral (0,1,2,. . . ) or half
odd-integral (1

2 , 32 ,52 ,. . . ). The allowable total angular momenta, which we state
without proof (since it requires a bit more group theory than we have time for) is:

j1 ⊗ j2 = (j1 + j2) ⊕ (j1 + j2 − 1) ⊕ (j1 + j2 − 2) ⊕ · · · ⊕ |j1 − j2|, (4.53)

where the absolute value |j1 − j2| is needed because the magnitude of angular
momentum is always a positive number and we’re allowing either j1 ≤ j2 or j1 ≥ j2.
Let’s refer to this relation as the ‘vector couplings.’

Exercise 4.30. Setting j1 = j2 = 1
2 show that this reduces to Eq.(4.51).

Exercise 4.31. In the table below, work out the vector couplings for the (j1, j2)
in the leftmost column and mark the column with an ‘X’ in whenever these couple
to the total j given in the top line of the table. The first two rows have been filled
in as an example.

8Unfortunately, as in many cases in physics’ notation, there is no universal notation in this

case and you’re likely to see both.
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(j1, j2) 0 1
2 1 3

2 2 5
2 3 7

2 4

(0,12 ) X
( 1
2 , 12 ) X X

(0,1)
( 1
2 ,1)

(1,1)
(0,2)
( 1
2 ,2)

(1,2)
( 3
2 ,2)

(2,2)

Notice that when we couple j1 and j2 the resultant j is always either integral
or half odd-integral. Also notice that when we couple integral with integral the
resultant is integral: 1 ⊗ 1 = 0 ⊕ 1 ⊕ 2. And that when we couple integral to half
odd-integral we obtain half odd-integral. Etc.

Exercise 4.32. Couple j1 = 1 to j2 = 1
2 to get |jm〉. Work out all the

states – there are six – using the CG table I sent along with these notes in the file
cgcoeffs.pdf. Use:

|j1j2; jm〉 =

j1
∑

m1=−j1

j2
∑

m2=−j2

|j1j2;m1m2〉〈j1j2;m1m2|j1j2; jm〉 (4.54)

with j1 = 1, j2 = 1
2 and j = 3

2 ,
1
2 .

5. Three spin- 1
2 particles

The last problem had you derive the 6 states with ‘good’ total angular momen-
tum j = 1

2 , 3
2 . By ‘good’ we mean “having a definite value” – which is another way

of saying the state is an eigenstate of the total angular momentum operator.
Let’s list these states. We use the notation |j1j2j2, jm;S3〉 = |jm;S3〉, where

now we have an additional label, S3 to further distinguish the states of good total
angular momentum. This is needed because we get two distinct j = 1

2 sets of states.

One from coupling j1 = 0 with j2 = 1
2 and one from j1 = 1 with j2 = 1

2 . Let’s use

the results from the last problem to write down the spin states and for three spin- 1
2
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particles then discuss the notation.

|32 ,+ 3
2 ;S〉 = | ↑↑↑〉 (4.55)

|32 ,+ 1
2 ;S〉 =

1√
3
| ↑↑↓〉 +

1√
3
| ↑↓↑〉 +

1√
3
| ↓↑↑〉 (4.56)

|32 ,− 1
2 ;S〉 =

1√
3
| ↓↓↑〉 +

1√
3
| ↓↑↓〉 +

1√
3
| ↑↓↓〉 (4.57)

|32 ,− 3
2 ;S〉 = | ↓↓↓〉 (4.58)

| 12 ,+ 1
2 ; ρ〉 = |0, 0〉 ⊗ | ↑〉

=
1√
2
| ↑↓↑〉 − 1√

2
| ↓↑↑〉 (4.59)

| 12 ,− 1
2 ; ρ〉 = |0, 0〉 ⊗ | ↓〉

=
1√
2
| ↑↓↓〉 − 1√

2
| ↓↑↓〉 (4.60)

| 12 ,+ 1
2 ;λ〉 =

√

2

3
|1,+1〉 ⊗ | ↓〉 − 1√

3
|1, 0〉 ⊗ | ↑〉

=
2√
6
| ↑↑↓〉 − 1√

6
| ↑↓↑〉 − 1√

6
| ↓↑↑〉 (4.61)

| 12 ,− 1
2 ;λ〉 =

1√
3
|1, 0〉 ⊗ | ↓〉 −

√

2

3
|1,−1〉 ⊗ | ↑〉

=
1√
3
| ↑↓↓〉 +

1√
3
| ↓↑↓〉 − 2√

6
| ↓↓↑〉. (4.62)

The label which we’ve called S3 takes on three distinct values, S, ρ, and λ. They
correspond to the characteristics of the states under permutations. We’ve learned
about one type of permutation – the transposition operator, Pij which interchanges
the labels of particles i and j. We’re not going to get into a full discussion of the
permutation group on n objects, Sn here. We’ll just note the following: states
with S3 = S are completely symmetric – we get the same state if we make any
permutation of the particle labels. For example if we apply P23 to |32 ,+ 1

2 ;S〉 we
obtain

P23| 32 ,+ 1
2 〉 =

1√
3
| ↑↓↑〉 +

1√
3
| ↑↑↓〉 +

1√
3
| ↓↑↑〉

=
1√
3
| ↑↑↓〉 +

1√
3
| ↑↓↑〉 +

1√
3
| ↓↑↑〉

= |32 ,+ 1
2 〉. (4.63)

These states are relatively simple concerning their properties under permutations
of the particle labels. The j = 1

2 states however are more complicated. For now,
we just note that since they were built from the S–basis states, which are antisym-
metric under the action of P12 for S = 0 and symmetric under P12 for S = 1, the
states |jm;S3〉 inheret these properties. The labels ρ and λ indicate this inhereted
symmetry property. The state ρ is antisymmetric under the action of P12 since it
was built from the S = 0 two-particle state and the state λ is symmetric under the
action of P12 since it was built from the S = 1 two particle state. Note that the
action of the other permutations, for example, P23 are not simple when acting on
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the S = ρ, λ states. Though the results of applying any permutation operator are
linear combinations of the the basis states.9

We’ll need to be aware of the symmetry properties of the states when we come
to combine these spin states with states that describe the other quantum numbers
of the baryons, like isospin. For now, just keep in mind that like the two-particle
states in the S–basis we can characterize the three-particle spin states by their
symmetry properties under permutations.

Let’s study the spin structure of these states in more detail in terms of their
angular momentum. The analog of Eq.(4.35) and the action of the operator Jz on
the above states can be written

J2|jm〉 = j(j + 1)|jm〉 (4.64)

Jz|jm〉 = m|jm〉 (4.65)

where J · J ≡ J2. Be sure to note that here

J2 ≡ J2
x + J2

y + J2
z (4.66)

J = J1 + J2 + J3 (4.67)

Equations (4.64) and (4.65) mean that the state |jm〉 are eigenstates of the op-
erators J2 and Jz, respectively. And so they have good values of total angular
momentum.

Exercise 4.33. Are the states |jm〉 eigenstates of J2
1? What about of J1,z?

In fact, while the basis |j1j2j3;m1m2m3〉 (the analog of the two-particle s–
basis) are eigenstates of the all the operators J2

1,J
2
2,J

2
3, J1,z, J2,z, J3,z, the states

|j1j2j3; jm〉 (the analog of the two-particle S–basis states) are eigenstates of the
operators J2

1,J
2
2,J

2
3,J

2, Jz. These two sets of operators are referred to as complete
sets of commuting observables. They afford a complete physical description of
the system under study.

That’s about all we’ll say about the three-particle spin basis for now. There is
a lot more one can say about this subject – it’s vast. For example, you can define
operators, J± like S± of Eq.(4.24) which have the effect of raising and lowering m
in |jm〉 as follows

J±|j,m〉 =
√

(j ∓m)(j ±m+ 1)|j,m± 1〉, (4.68)

where J± = Jx ± iJy and remember that here, for example, Jx = J1,x +J2,x +J3,x.
So you can see that if you know one of the states in the total J basis you can find
the other by repeated application of the operators J±.

Exercise 4.34. Apply the operator J− to the stretched state j = m, ie.
|j = 3

2 ,m = j = + 3
2 〉 to obtain the state |32 ,+ 1

2 〉. You need to apply J− =
J1,− + J2,− + J3,−, using J− on the lhs and J1,− + J2,− + J3,− on the rhs.

Now that we have the spin states of three quarks somewhat under control, we
need to turn to the other quantum numbers of the quarks – flavor and color.

9For the ambitious reader, this line of argument leads directly to matrix representations of
the the symmetric group, Sn when acting on a basis of states. See if you can, for example, find
the matrices corresponding to P12. P13, and P23 from the states in Eqs.(4.59) & (4.61). Do these

matrices satisfy the S3 group multiplication rules, for example: P12P13 = P23P12?
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6. The full three quark wave function

6.1. Single quark revisited. The quark has three quantum numbers which
describe its physical properties: spin, flavor, and color.10 We’ve covered the spin,
s = 1

2 . The other two quantum numbers have been described in your readings in
Griffiths and other places. They are somewhat more abstract, physically speaking,
than the spin, since most people have an intuitive sense of what spin “is”. (But
remember that the quark spin doesn’t arise because the electron is really physically
spinning like the earth on its axis.) This is because the spin of the quark is “in”
physical space. You can ‘see’ it. Flavor and color on the other hand are not. They
are therefore often referred to as internal quantum numbers. But beware of
this moniker. They are no less real than spin. One nice thing about them is that,
mathematically, they aren’t too different from spin. The internal quantum numbers
describe other physical attributes of the quarks which have been inferred on the
basis of experimental observation – they must be there, and be described in just
the right mathematical fashion, to describe what is observed in nature.

Let’s denote the single quark state as |q〉 = |σ, τ, c〉, q stands collectively for
σ, τ, c which are the quark coordinates. Here σ is the spin-projection, what we’ve
been calling m or m1 or M , etc. (↑, ↓) for the single quark. The label τ (rhymes
with ‘Ow!’) is for the flavor (u, d, . . .) and the label c describes the color (below) of
the quark. There are 6 possible flavors of quarks that we know of. This means τ can
have the ‘values’: u, d, s, c, b, t often referred to by the names up, down, strange,
charm, bottom, top (Brits prefer beauty and truth for the last two). And each
flavor of quark comes in three colors, c = R,G,B (sometimes these are R, Y,B – it
doesn’t matter). These labels, of course, aren’t real flavors or colors. They’re just
names that people have come up with to describe the observed possible quantum
states that quarks can occupy. Just like the spin of a single quark can be only ± 1

2
the flavor of the quark can be only u, d, s, c, b, t and the color can be only R,G,B.
Now, for the purposes of our study of hadronic structure, we won’t be interested
in the c, b, or t quarks – they’re too heavy to play much of a role in the light or
‘low-lying’ hadrons that we want to study.

Exercise 4.35. Look up the masses of the all the quarks and tabulate them,
noting their flavor, charge, and mass. Plot their masses on a semi-logarithmic
graph where the abscissa (y axis) is the logarithm of the mass and the ordinate is
the flavor. Calculate the mass of the top quark in grams.

So how do we describe these quarks mathematically? Well, think back to the
case of the the spin of a single quark. We described it in terms of a single quantum
number, m (or now σ) which we represented mathematically as a particular of a
spinor – a complex, 2-D vector. Now, each quark is going to be described in terms
of the three quantum numbers, the possible values of which span a 2 × 3 × 3 =
18 dimensional complex space. We multiply the dimensions because the quark is
simultaneously in a state of a given spin, flavor and color. So the generalization of

10Remember that in the quantum theory, all particles of a given species are identical. So we

speak of the quark.
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the spinors that we used to describe the spin of the quark look like

|q〉 =

























q↑uR

q↓uR

q↑dR

...
q↑uG

...
q↓sB

























, (4.69)

=
∑

σ=↑,↓

∑

τ=u,d,s

∑

c=R,G,B

qσ,τ,c|σ, τc〉 (4.70)

where we haven’t shown all the entries in the 18-dimesional complex vector |q〉
required to describe the quark. Note that each entry, qσ,τ,c ∈ C – ie. is a complex
number. And that the probability of finding a quark with the particular values of
σ, τ, c are given by the norm (or modulus) of this entry

Pσ,τ,c = |〈σ, τ, c|q〉|2 (4.71)

= |qσ,τ,c|2 (4.72)

just like in the case of the spin – compare to Eqs.(1.102).
Phew! That thing is crazy! Look at the size of it. Especially when you consider

that you’re going to be working with not one by three quarks with 183 = 5832
components! You might be terrified by such an object. You might think of hanging
up your pencil and forgetting about this project. But have no fear. Things are not
all that bad. In practice, we never have to deal with such and unwieldy object. We
always deal with only one sector – spin, flavor or color, at a time. This and some
other tricks will simplify our task.

6.2. Flavor states. In the last section, we decided to confine our attention
to the light quarks, u, d, and s. Let’s make it even more simple. Let’s talk only
about u and d quarks.

Now, if u quark and a d quark have exactly the same mass: mu = md then
since they all their other physical attributes (there’s only spin!) are the same we
should properly, in the quantum theory, treat them simply as different states of the
same particle. This is similar to what happens in the case of the intrinsic spin. We
don’t speak of a spin ↑ electron being a different particle from a spin ↓ quark! That
even sounds ridiculous. In this way we associate the two different flavors u and d
with different flavor states

|u〉 =

[

1
0

]

, |d〉 =

[

0
1

]

(4.73)

But these are just exactly the same as the basis states we used to describe the spin
of the quark, with the replacement ↑→ u and ↓→ d. So:

The mathematics of flavor symmetries are identical to those of
rotation symmetries, namely SU(2).

This time, however, rotations of the quark flavor don’t occur in the physical
configuration space, R

3, they occur in flavor space, which is a Hilbert space which
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we’ll call F . This space is called isospin space11 and everything gets generalized
from ‘spin’ to ‘isospin’ – S → T , Sz → Tz, S2 → T2, . . . For example, T is the total
isospin, etc.

Exercise 4.36. For three quarks, write down the T = 1
2 isospin states for both

the ρ and λ sets. Remember ↑→ u and ↓→ d!

Easy, since we’ve done all the hard work for spin.

6.3. Color states. The last quantum number we need to contend with is
color. Color comes in three varieties and since you’ve probably figured out the
game by now, you could guess that the three states corresponding to color can be
taken to be:

|R〉 =





1
0
0



 , |G〉 =





0
1
0



 , |B〉 =





0
0
1



 (4.74)

and the general color state of a single quark is

|χC〉 =
∑

c=R,G,B

χC
c |c〉, (4.75)

where χC
c ∈ C. Note that since there are three basis states, |R〉, |B〉, |G〉 the group

theory that describes color is distinct from that which describes spin or isospin.
Spin and isospin were two-dimensional and we used SU(2) to describe it.

Exercise 4.37. What is the group which describe u, d, s quarks (assuming they
all have the same mass)?

When we consider color states of more than one quark, we can still classify
them by their symmetry properties. One out of the many three quark color states
one is special.

Exercise 4.38. How many three quark color states are there?

It is completely antisymmetric under any exchange of the particle labels. It is
called the color singlet and it is given by

|χC
0 〉 =

1√
6

(

|RGB〉 − |RBG〉 + |GBR〉 − |BGR〉 + |BRG〉 − |GRB〉
)

, (4.76)

=
1√
6
ǫαβγ |cα1 cβ2 cγ3〉, (4.77)

where the subscript, ‘0’ indicates that this state is the ‘singlet.’ (The indices α, β, γ
each run over R,G,B ↔ 1, 2, 3 and they are summed over.)

Exercise 4.39. When we rotate the spin singlet state of two quarks [Eq.(4.36)]
nothing happens to it. Why? What happens to the color singlet state when we
‘rotate’ it in color space?

Exercise 4.40. Calculate 〈χC
0 |χC

0 〉.
Exercise 4.41. Show that Pij |χC

0 〉 = −|χC
0 〉 for ij = 12, 13, 23.

11When we have just two flavors u and d we speak of ‘isospin space’. With three flavors,

u, d, s we speak of ‘flavor space’. But u and d can be referred to as ‘flavor’ in either case.
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What’s so special about the color singlet? All baryons (that is, all states
of three quarks) that have been observed to date are apparently, to very high
accuracy, color singlets. This is an astonishing fact. It means that all the baryons
(in fact, all the hadrons) are equal parts R, G, and B. This means that all physical
states are colorless. This is what it means to be ‘color singlet.’ No matter what
transformations you do in color space (analogous to rotations in physical space and
flavor space) the effect on a color singlet state is nil – nothing happens to a color
singlet. For our purposes, it means that we can write down the state once and
forget about it! That’s right, we don’t even explicitly write down the color singlet
state when we’re writing down the wave function. We just remember that it’s there
in case we need it. We won’t.

6.4. Spin-isospin-color wave function. Now we come into the home stretch.
We need to write down the complete wave function for states of three quarks for
the baryon, |B〉 where B is the baryon label: B = N,∆ (we’ll consider Σ,Ξ,Λ,Ω
later). (N means p or n.) Each baryon is described by a state which is a sum of
products of spin, isospin, and color factors

|B;S, Sz, T, Tz, C = 0〉 =






∑

S
(S)
3 ,S

(T )
3

C
(B)

S
(S)
3 ,S

(T )
3

|χS(S, Sz;S
(S)
3 )〉 ⊗ |χT (T, Tz;S

(T )
3 )〉






⊗ |χC

0 〉. (4.78)

Here, C = 0 on the lhs means that we’re considering the color singlet state. The
color singlet factors from the rest of the wave function. So we can write:

|B;S, Sz, T, Tz, C = 0〉 = |B;S, Sz, T, Tz〉 ⊗ |χC
0 〉, (4.79)

|B;S, Sz, T, Tz〉 =
∑

S
(S)
3 ,S

(T )
3

C
(B)

S
(S)
3 ,S

(T )
3

|χS(S, Sz;S3)〉 ⊗ |χT (T, Tz;S3)〉

(4.80)

Before we discuss this formula in detail, we recall that states composed of an odd
number of fermions must be completely antisymmetric under permutation of the
particle labels due to PIP. So we must take sums of the form in Eq.(4.78) in order to
achieve this. As we noted earlier, the states in Eqs.(4.55) – (4.62) have complicated
properties under permutations for some of the transposition operators. Then, with
this in mind, for a given spin and isospin of the baryon B: S, Sz, T, Tz we take
sums of different symmetry-type wave functions to obtain overall antisymmetric
wave functions.

Now, we have already noted that the color singlet wave function is completely
antisymmetric. Then we must have the spin-isospin factor, Eq.(4.80) be completely
symmetric under particle relabelings.

Exercise 4.42. Prove that the spin-isospin factor, χSχT is completely sym-
metric in Eq.(4.80).

Next, consider the sums in Eq.(4.80). These are sums over the symmetry
types in Eqs.(4.55)–(4.62). We take linear combinations of these states with the

coefficients C
(B)

S
(S)
3 ,S

(T )
3

. These coefficients are like the CG coefficients in the sense

that they relate states in one basis to states in another. In this case however the
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bases that are being related are those with certain symmetry types. The indices

S
(S)
3 and S

(T )
3 run over the labels S, ρ, λ. The coefficients have the values

C(N)
ρ,ρ =

1√
2

(4.81)

C
(N)
λ,λ =

1√
2

(4.82)

when B = N and

C
(∆)
S,S = 1, (4.83)

when B = ∆, with all the rest being zero. You have to be careful that you choose the

states |S, Sz;S
(S)
3 〉 and |T, Tz;S

(T )
3 〉 correctly for the baryon state |B;S, Sz, T, Tz〉

that you’re considering. Just follow the notation and things should work out all
right.

Exercise 4.43. Calculate the overall wave function for the following states
|N ;S = 1

2 , Sz = + 1
2 , T = 1

2 , Tz = + 1
2 〉

|N ;S = 1
2 , Sz = + 1

2 , T = 1
2 , Tz = − 1

2 〉
|∆;S = 3

2 , Sz = + 3
2 , T = 3

2 , Tz = + 3
2 〉

|∆;S = 3
2 , Sz = + 3

2 , T = 3
2 , Tz = − 1

2 〉.
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7. Magnetic moments of the baryons

7.1. Discussion. We learned in the Chapter 3 that a spin-1
2 particle in a

magnetic field has an energy which depends on the orientation of the spin of the
particle with respect to the field. In fact, any particle with non-zero spin has such
an energy which for subatomic objects is generally a very small amount of energy.
Nevertheless, experiments are constructed which permit the measurement of this
small energy – or rather, differences in energies between different orientations of
the spins of the particle being studied.

We already know that the energy of two independent spin-1
2particles is given

by Eq.(4.3). The generalization to three particles is obvious

Ĥspin = Ĥspin,1 + Ĥspin,2 + Ĥspin,3 (4.84)

= −(µ1S1 ⊗ 112 ⊗ 113 + µ2111 ⊗ S2 ⊗ 113 + µ3111 ⊗ 112 ⊗ S3) · B, (4.85)

where we have made explicit the identity matrices for the “inactive” particles in
each term. We won’t write them from here on out. Simply put:

Ĥspin = −(µ1S1 + µ2S2 + µ3S3) · B, (4.86)

The magnetic moment of a quark, µi is defined as

µi = gq
qie

2mi
(4.87)

where qi can be positive or negative and is the charge of quark i in units of e = |e|
(the charge of the proton), gq = 2 is the quark’s “gyromagnetic ratio,” and mi is
its mass. Clearly then, if the magnetic field is B = (0, 0, B) can write the energy
of the baryon as

Ĥspin = −µ̂B B, (4.88)

µ̂B =

3
∑

i=1

µiSi,z, (4.89)

=
3
∑

i=1

qie

2mi
σi,z. (4.90)

Here we have written µ̂B with a ‘carat’ to show that it is an operator.

Exercise 4.44. Show that this is equivalent to Griffiths Eq.(5.117) if we take
µB = 〈B ↑ |µ̂B |B ↑〉.

Let’s recall the physical properties of the u, d and s quarks:

mu = 313 MeV md = 313 MeV ms = 550 MeV (4.91)

qu = +
2

3
qd = −1

3
qs = −1

3
. (4.92)

These are the constituent quark of effective masses of the quarks. Compare with
the discussion in §4.5 of Griffiths and his Table 4.4 there. We’ll simply take these as
‘experimental facts’ at this stage and not worry about where these numbers come
from.12

12In fact, the constituent masses are not experimentally accessible (they’re not obervables)

because of a long distance property of QCD called confinement.



56 4. MANY-BODY QUANTUM MECHANICS

The masses we’re for the quarks using were originally determined from an
analysis which fit the magnetic moments and masses of the baryons by taking the
masses of u, d, s to be parameters. So what we’re doing is a consistency check of
this analysis. We: i) assume values of the quark masses; ii) check to see if the
magnetic moments and the masses we obtain make sense. If this isn’t completely
clear at this stage, don’t worry – it’ll become so once you see how we calculate the
magnetic moments and masses of the baryons.

So remember: the quarks each have a magnetic moment and they combine to
give the magnetic moment of the baryon. It’s all a matter of determining this
combination or coupling of the spins and, therefore flavors (since the spin-isospin
wave function must be overall symmetric) in the baryon wave function that will
give us its total magnetic moment. This is familiar from the calculation of the
energy of two electrons in a magnetic field. There we saw that depending on how
we combined the spins either to give S = 0, Sz = 0 or S = 1, Sz = +1 we obtained
different energies in the magnetic field.

You might bw wondering why I refer to only these two states of S = 0 and
S = 1. First, by definition, the magnetic moment of the state refers to the magnetic
moment calculated in the stretched state – ie. if we have a particle of spin J then
the magnetic moment is determined by calculating the energy Eq.(4.86) in the
stretched state |JJ〉. The states of different M 6= J are related to the stretched
state |JJ〉 by a rotation of all three quarks or, equivalently of the magnetic field
while the quarks are held still. These states, therefore, don’t tell us anything new
about the intrinsic structure of the baryon and that’s what we’re interested in.

7.2. Magnetic moment evaluation. This subsection will deal with the de-
tails of calculating the magnetic moment operator for a proton in the state |p ↑〉.
A one-body operator O(1), like the magnetic moment operator µ̂B , is a sum of
terms each of which acts on the coordinates of just one particle. Contrast this with
operators like

O(2) =

3
∑

i<j=1

V0σi · σj (4.93)

= V0(σ1 · σ2 + σ1 · σ3 + σ2 · σ3) (4.94)

in which each term has operators which act the coordinates of a pair of particles.
We’ll come back to this sort of operator in the next subsection when we discuss the
baryon mass operator.

Returning to the baryon magnetic moment operator, we have

µ̂B =

3
∑

i=1

qie

2mi
σi,z. (4.95)

In Ex.(4.43) you found the wave function of the spin ↑ proton to be:

|p ↑〉 =
1

3
√

2

[

2|u ↑ u ↑ d ↓〉 − |u ↑ u ↓ d ↑〉 − |u ↓ u ↑ d ↑〉

+2|u ↑ d ↓ u ↑〉 − |u ↓ d ↑ u ↑〉 − |u ↑ d ↑ u ↓〉

+2|d ↓ u ↑ u ↑〉 − |d ↑ u ↑ u ↓〉 − |d ↑ u ↓ u ↑〉
]

. (4.96)

Let’s talk about this equation in some detail to make sure we’re properly oriented.
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In this equation, we are writing the quantum numbers of quark ‘1’ first, then
those of quark ‘2’, etc. You should think of the flavor and spin quantum numbers
for a given quark as a ‘unit’ like |τσ〉. For example, the first term is more completely
written

2√
18

|(u ↑)1(u ↑)2(d ↓)3〉. (4.97)

You can see that writing the quantum numbers of the quarks in the order of their
labelings saves a lot of writing.

The wave function can be written in a form which is a little easier on the eyes:

|p ↑〉 =
1

3
√

2

[

2|u ↑ u ↑ d ↓〉 − |u ↑ u ↓ d ↑〉 − |u ↓ u ↑ d ↑〉

+cyclic permutations
]

. (4.98)

Here we have dropped the second and third lines of Eq.(4.96) and instead written
‘cyclic permutations’. Cyclic permutations are those permutations which change
all of the indices simultaneously.

Exercise 4.45. Prove that for S3 the number of independent cyclic permuta-
tions is two.13 Give them as follows: if we start with the ordering 123, give the
resultant orderings of the two possible cyclic permutations.

Exercise 4.46. Extra credit Prove that the number of cyclic permutations
in Sn is (n− 1)!.

We’re now in a position to calculate. The magnetic moment of the proton µp is
defined as the expectation value of the operator in Eq.(4.88) in the stretched state
of the proton.

Exercise 4.47. The proton has S = 1
2 . What is the MS of the stretched state?

Then µp is given by the expectation value

µB = 〈µ̂B〉 = 〈p ↑ |µ̂B |p ↑〉 (4.99)

= 〈p ↑ |
3
∑

i=1

qie

2mi
σi,z|p ↑〉. (4.100)

Well, this looks like a big job. We have three terms in the operator O(1), one for
each particle. And each of these terms requires, ostensibly14, the calculation of 81
matrix elements15 since there are 9 terms in the bra and 9 terms in the ket. Let’s
see if we can’t simplify the task somewhat.

The first thing we notice is that the wave function |p ↑〉 for the proton is a sum
of 9 terms each of which is orthogonal to the other 8 terms.

Exercise 4.48. Prove that the off-diagonal matrix elements, like
〈u ↑ u ↑ d ↓ |σi,z|u ↓ u ↑ d ↑〉 is zero no matter what value i (particle number)
takes.

Exercise 4.49. By eliminating the off-diagonal matrix elements how many
terms do we have to calculate now?

13Remember that the notation Sn means the symmetric group of n objects.
14Meaning: ‘not taking into account possible orthogonality of inactive particles.’
15Here “matrix elements” is used to mean either ‘bra different from ket’ or ‘bra same as ket.’
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So we’ve considerably simplified our task and learned the first analytical tool
for evaluating operators on many-body wave functions: always determine which
matrix elements don’t contribute due to orthogonality of the inactive coordinates
– inactive coordinates are those of the particles which are not being acted upon by
the operator under consideration.

We can further simplify the calculation however, by exploiting the redundancy
in the proton wave function’s cyclic pertmutations in Eq.(4.98). We can write the
cyclic permutations as operators. In the case of the transposition operators we
wrote P12 (described in the text near Eq.(4.6)) to mean 1 → 2, 2 → 1. For the
cyclic operators in S3, we want 1 → 2, 2 → 3, 3 → 1 and 1 → 3, 3 → 2, 2 → 1. The
first is written as P123 while the second is P132. You should read them as “1 to 2 to
3 to 1” and “1 to 3 to 2 to 1”. Note that, as advertised, none of the indices remain
the same under cyclic permutation.

Exercise 4.50. List the cyclic permutations for S4.

Using these operators we can rewrite proton wave function as

|p ↑〉 = [1 + P123 + P132] |Ψuud〉 (4.101)

|Ψuud〉 =
1

3
√

2
[2|u ↑ u ↑ d ↓〉 − |u ↑ u ↓ d ↑〉 − |u ↓ u ↑ d ↑〉] . (4.102)

We’ve called the first line of Eq.(4.96) |Ψuud〉 (because each term has quark 1 u,
quark 2 u, and quark 3 d) and then let the cyclic permutation operators act on this
state. Remember that all these terms are necessary to make the state |p ↑〉 totally
symmetric.

Exercise 4.51. Prove Eq.(4.101) by writing out the terms explicitly.

Now we can have another look at the expectation value in Eq.(4.99)

µB = 〈p ↑ |µ̂B |p ↑〉 (4.103)

= 〈Ψuud| [1 + P123 + P132] µ̂B [1 + P123 + P132] |Ψuud〉 (4.104)

= 〈Ψuud|µ̂B |Ψuud〉 + 〈Ψuud|P123µ̂BP132|Ψuud〉 + 〈Ψuud|P132µ̂BP123|Ψuud〉
(4.105)

where, in the last line, we have used the fact that the off-diagonal matrix elements
don’t contribute.

Exercise 4.52. Argue (in other words, ‘prove’) than the ‘direct’ terms like
〈Ψuud|P123µ̂BP123|Ψuud〉 are zero using the fact that P123P123 = P132.

The next thing we’ll need to figure out are the expectation values

〈Ψuud|P123µ̂BP132|Ψuud〉 and 〈Ψuud|P132µ̂BP123|Ψuud〉. (4.106)

What the heck are these? They’re actually very simple. First, let’s note something
about the operator µ̂B . Since it is the sum of three identical terms, it’s unchanged
(or ‘invariant’) under permutation of any of the particle label indices. If we write
any permutation by the generic symbol Pπ (where π can take on any of the six
elements of the group S3 (),(12),(13),(23),(123),(132)) then

[Pπ, µ̂B ] = 0. (4.107)

This means that any of the permutations commutes with the magnetic moment
operator since it’s a completely symmetric function with respect to the particle
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labels. Obviously this holds for any operator which is a completely symmetric
function of the particle labels, like the Hamiltonian. So you see that Eq.(4.107) is
the mathematical expression of the PIP.

Exercise 4.53. Using the relation from Ex.(4.52), P123P123 = P132, show that
P123P132 = 11.

Exercise 4.54. Using Eq.(4.107) and the identity shown in the previous prob-
lem, show that

〈Ψuud|µ̂B |Ψuud〉
=〈Ψuud|P123µ̂BP123|Ψuud〉
=〈Ψuud|P132µ̂BP132|Ψuud〉. (4.108)

Exercise 4.55. Finally, show:

µB = 3〈Ψuud|µ̂B |Ψuud〉. (4.109)

What we have done is show, in explicit detail, how Griffiths arrived at his
solution for µp in his example 5.3 on P.181.

Exercise 4.56. Calculate the ratio of the magnetic moments for the proton
and neutron: µn

µp
.



60 4. MANY-BODY QUANTUM MECHANICS

8. Mass of the baryons

8.1. Discussion. We turn now to the calculation of the masses of the light
quark baryons, N and ∆.16 In the theory of relativity, we learn that the energy of
an object (like an electron, proton, a horse, whatever) is related to its momentum
p and its mass, m by

E =
√

|p|2 +m2, (4.110)

as Einstein instructed us all back in 1905. (The units in this equation are such
that the speed of light, c = 1.) For an object at rest, p = 0, we obtain the famous
equation

E = mc2 (4.111)

with the speed of light, c = 2.998 × 108 m/s now shown explicitly.
In quantum mechanics, we calculate the energy of an object moving with mo-

mentum, p, by evaluating the Hamiltonian operator, Ĥ on the wave function,
|Ψ(p)〉 which describes it

Ĥ|Ψ(p)〉 = E|Ψ(p)〉 (4.112)

=
√

|p|2 +m2|Ψ(p)〉. (4.113)

If the particle is at rest, we simply have

Ĥ|Ψ〉 = m|Ψ〉, (4.114)

where we have written |Ψ(p = 0)〉 = |Ψ〉. The mass is then just the expectation
value of the Hamilonian operator

m =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 . (4.115)

In this case, the operator Ĥ is sometimes called the mass operator for obvious
reasons.

Exercise 4.57. Prove this equation from Eq.(4.114). Write the expression for
the mass, m in the case that the state |Ψ〉 is normalized to one.

What does this mass operator look like? Well, if we ignore interactions between
the particles17 then the energy of the system of particles is just the sum of their
individual energies, similar to Eq.(4.2):

E = E1 + E2 + E3. (4.116)

We’ll also make the apparently ridiculous assumption that the quarks aren’t moving,
so their kinetic energy is zero. It actually turns out that we can get away with
making this assumption – but not because it’s true ! In fact, it couldn’t be further
from the truth. Perhaps we’ll talk more about this point after we do the mass
calculation.

16The light quarks are u and d (sometimes s – but not for our purposes).
17Obviously, there must be interactions between the particles. Otherwise they wouldn’t be

bound together.
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Proceeding, we’re assuming the quarks are at rest and not interacting. This
means both the kinetic energy (energy of motion) and the potential energy (energy
of position) are zero. The only other source of energy is the mass! So

E = m1 +m2 +m3. (4.117)

This means that the Hamiltonian is, obviously, Ĥ =
∑

imi.

Exercise 4.58. Calculate the masses of the N and ∆ states in terms of the
mass of the light quarks mq, where mu = md = mq in the approximation that we
neglect kinetic and potential energies of the quarks.

Exercise 4.59. In the approximation we’re using (no kinetic, no potential,
and mq = mu = md) prove that the masses of all the states: p, n,∆++,∆+,∆0,∆−

are all the same.

With this admittedly ridiculous assumption, you see from this Problem that
the masses of the N and ∆ are degenerate. This won’t do, since their masses are
observed to be18:

mN = 939 MeV (4.118)

m∆ = 1232 MeV (4.119)

δo ≡ m∆ −mN = 293 MeV. (4.120)

There is a significant observed mass splitting, δo between the N and ∆ states.
Presently, we are calculating the mass splitting to be δc = 0. How – if at all – can
we reproduce the correct δc = δo with our simple model?

There are two routes we can take. First, we might ask: Can we get the calcu-
lated mass splitting δc correct if we take into account the fact that the quarks are
moving ‘inside’ the baryon? It turns out that this does give a significant contribu-
tion to δc if we take into account spatial correlations between the quarks. This is a
might too ambitious at this stage since it involves using wave functions which have
a factor, in addition to the spin, isospin, and color factors, which depends on the
positions of the three quarks, ψpos(r1, r2, r3). This is very complicated, so let’s try
the other route.

What about potential energy? Can we get δc = δo if we have some potential
energies between the quarks? The answer, of course, is yes!

What sort of potential energy, which we’ll call, V̂ can we consider? We know
that any charged particle with spin–1

2 has a magnetic moment. A magnetic moment
generates a magnetic field in the vicinity of the particle. Another particle’s magnetic
moment, if close enough to be immersed in the magnetic field of the first particle,
feels a force which tends to align it’s magnetic moment (or spin) with the magnetic
field. Therefore, if the spins of two quarks are aligned the force is attractive. If
they’re anti-aligned, it’s repulsive.

Some of this information can be encoded into an operator which depends on
the spins of the two quarks in question. The operator which gives the potential

18A word of caution by way of an excuse for my laziness: one should always include the

precision to which an observed quantity is known. For example, the mass of the proton in MeV
is mp = 938.27203(8) = 938.27203 ± 0.00008. This is one of the best known physical quantities
and quite small, so we’ll ignore the precision for it, along with the neutron mass which is known

to the same precision. The ∆ mass is much less well known (Why?) at (in MeV) m∆ = 1232(2).
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energy between quarks ‘1’ and ‘2’ is

V12 = V 0
12σ1 · σ2. (4.121)

This is the so-called “hyperfine interaction.” Here, the constant V 0
12 ∈ R is assumed

to be V 0
12 > 0, and it will eventually be chosen to fit the observed data, ie. to make

δc = δo. We should be careful here to mention that the form of the potential
used here is a gross simplification of more sophisticated treatments of the force
between pairs of quarks. In fact, there is no potential description of this force,
in reality.19 But experience has shown that this simple model (and extension) is
useful in determining some of the properties of the nucleon. And it is very simple
– it depends only on the spins of the quark pair, not their positions in space.
We have ‘convoluted’ the spatial properties of the interaction into the constant V 0

12.
Incidentally, the hyperfine interaction is not like the force between two bar magnets.
For this force has a strong dependence on the angular orientation of this spins with
respect to the line connecting them.

In any case, with the above caveats, we’ll happily use this operator to calculate
the quantity, δc.

Exercise 4.60. Using the results in Eqs.(4.27), show that if the two quark
spins have S = 1 (ie. are aligned), the expectation value of the pair potential

operator, V̂12 is positive. What is its value? Also calculate their potential energy
when they have S = 0 (are anti-aligned) and show it is negative.

The total potential energy, V̂ is simply the sum of the mutual interactions of
all the pairs. In the case of three quarks then we have

V̂ = V 0
12σ1 · σ2 + V 0

13σ1 · σ3 + V 0
23σ2 · σ3 (4.122)

=
3
∑

i<j=1

V 0
ijσi · σj . (4.123)

The constants, V 0
ij are allowed to depend on the properties of quarks i and j. For

example, Griffiths chooses (in his Eq.(5.119))

V 0
ij =

A′

4

1

mimj
. (4.124)

Now we have our (more) complete Hamiltonian with which to calculate the
mass splittings of the N and ∆:

Ĥ =

3
∑

i=1

mi +

3
∑

i<j=1

V 0
ijσi · σj . (4.125)

8.2. Mass calculation. We’re in the home stretch now. We wish to calculate
the masses of the N and the ∆ which we refer to generically, as the state |B,Sz〉,
where Sz is the total spin of the baryon projected on the z axis. The expectation

19The nucleon is a system of infinitely many bodies moving relativistically.
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value we need is

mB = 〈B,Sz|Ĥ|B,Sz〉 (4.126)

=
∑

i

mi + 〈B,Sz|V̂ |B,Sz〉 (4.127)

= 3mq +
∑

i<j

〈B,Sz|V 0
ijσi · σj |B,Sz〉 (4.128)

Here, again, in the case of the proton (the ∆ is much more simple and we leave
the calculation of its mass as an exercise) we need to evaluate the 243 = 3 × 92

terms in the expectation value. So our first move is to check to see which matrix
elements are zero by orthogonality. This time we have a little more complicated
problem than in the evaluation of the magnetic moment, as the following problem
demonstrates.

Exercise 4.61. Evaluate the off-diagonal matrix element

〈u ↑ u ↑ d ↓ |σ2 · σ3|u ↑ u ↓ d ↑〉. (4.129)

Apparently, we’ve got a big job here. Actually, we can simplify the problem
significantly again. How? Exactly the same we exploited the permutation sym-
metries of the operator and wave functions in the case of the magnetic moment.
Consider the term

M12 = 〈B|σ1 · σ2|B〉 (4.130)

where we’ve suppressed the Sz label in the wave function. By inserting appropriate
permutation operators:

M12 = 〈B|(11)σ1 · σ2(11)|B〉 (4.131)

= 〈B|PijPijσ1 · σ2PijPij |B〉. (4.132)

Exercise 4.62. Complete the proof that M12 = M13 = M23 by choosing
appropriate values of i and j for each equality and working out the algebra.

We’ve made a moderate simplification of the problem thus far. We now need
to consider

mB = 3mq + (V 0
12 + V 0

13 + V 0
23)〈B,Sz|σ1 · σ2|B,Sz〉. (4.133)

This equation is general – it holds for any completely symmetric wave function |B〉.
Exercise 4.63. Prove Eq.(4.133).

This means we still have 81 terms for the proton. Uh-oh. Have no fear. We
can further simplify. Let’s write out the the proton wave function in it’s explicit
form which we get from Eq.(4.80), that is before we unpackage all the |u ↑ u ↑ d ↓〉
terms. We have

|p ↑〉 =
1√
2

{

|T ; 1
2 ,+

1
2 ; ρ〉|S; 1

2 ,+
1
2 ; ρ〉 + |T ; 1

2 ,+
1
2 ;λ〉|S; 1

2 ,+
1
2 ;λ〉

}

(4.134)

=
1√
2

{

|T ; 1
2 ,+

1
2 ; ρ〉|S12; 0, 0〉| ↑〉

+|T ; 1
2 ,+

1
2 ;λ〉

[

√

2

3
|S12; 1,+1〉| ↓〉 − 1√

3
|S12; 1, 0〉| ↑〉

]}

. (4.135)
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This is the form we want to work with. What happens when we apply the operator
σ1 · σ2 to it? Let’s work it out:

Exercise 4.64. Using the Eqs.(4.27) and realizing that each term in the above
expression for |p ↑〉 has definite spin for particles ‘1’ and ‘2’, S12 evaluate the
σ1 ·σ2|p ↑〉. Your answer should look a lot like Eq.(4.134) with different numerical
coefficients in front of the terms with differing S12.

Exercise 4.65. Using the results of the previous equation show that 〈p ↑
|σ1 · σ2|p ↑〉 = −1.

Substitution into Eq.(4.133) gives

mp = 3mq − (V 0
12 + V 0

13 + V 0
23) (4.136)

= 3mq −
3

4
A′ 1

m2
q

, (4.137)

where in the last line we have used Griffiths’ form, Eq.(4.124) and assumed that
mu = md = mq.

Exercise 4.66. Work out this equation and compare to Griffiths result in his
Eq.(5.122).

Exercise 4.67. Calculate the mass of the ∆, m∆ and compare with Griffiths
formula Eq.(5.123).

Exercise 4.68. Calculate the mass splitting of the N and ∆, δc. Express the
result as a function of mq and A′.

Exercise 4.69. Using the numerical values for the quark masses and constant
A′ that Griffiths uses, calculate the values of the N and ∆ masses. Use these to
detemine δc and compare it to δo.


